Xyst test code coverage report
Current view: top level - Mesh - DerivedData.cpp (source / functions) Hit Total Coverage
Commit: 5689ba12dc66a776d3d75f1ee48cc7d78eaa18dc Lines: 360 381 94.5 %
Date: 2024-11-22 19:02:53 Functions: 20 21 95.2 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 334 472 70.8 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/Mesh/DerivedData.cpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.,
       7                 :            :              2022-2024 J. Bakosi
       8                 :            :              All rights reserved. See the LICENSE file for details.
       9                 :            :   \brief     Generate data structures derived from unstructured mesh
      10                 :            :   \details   Generate data structures derived from the connectivity information
      11                 :            :      of an unstructured mesh.
      12                 :            : */
      13                 :            : // *****************************************************************************
      14                 :            : 
      15                 :            : #include <set>
      16                 :            : #include <map>
      17                 :            : #include <iterator>
      18                 :            : #include <numeric>
      19                 :            : #include <algorithm>
      20                 :            : #include <type_traits>
      21                 :            : #include <cstddef>
      22                 :            : #include <array>
      23                 :            : #include <unordered_set>
      24                 :            : #include <unordered_map>
      25                 :            : #include <iostream>
      26                 :            : #include <cfenv>
      27                 :            : 
      28                 :            : #include "Exception.hpp"
      29                 :            : #include "DerivedData.hpp"
      30                 :            : #include "ContainerUtil.hpp"
      31                 :            : #include "Vector.hpp"
      32                 :            : 
      33                 :            : namespace tk {
      34                 :            : 
      35                 :            : std::size_t
      36                 :       2582 : npoin_in_graph( const std::vector< std::size_t >& inpoel )
      37                 :            : // *****************************************************************************
      38                 :            : // Compute number of points (nodes) in mesh from connectivity
      39                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
      40                 :            : //! \return Number of mesh points (nodes)
      41                 :            : // *****************************************************************************
      42                 :            : {
      43                 :       2582 :   auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
      44                 :            :   Assert( *minmax.first == 0, "node ids should start from zero" );
      45                 :       2582 :   return *minmax.second + 1;
      46                 :            : }
      47                 :            : 
      48                 :            : std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
      49                 :       7634 : genEsup( const std::vector< std::size_t >& inpoel, std::size_t nnpe )
      50                 :            : // *****************************************************************************
      51                 :            : //  Generate derived data structure, elements surrounding points
      52                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
      53                 :            : //!   node ids of each element of an unstructured mesh. Example:
      54                 :            : //!   \code{.cpp}
      55                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
      56                 :            : //!                                         10, 14, 13, 12 };
      57                 :            : //!   \endcode
      58                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
      59                 :            : //!   and { 10, 14, 13, 12 }.
      60                 :            : //! \param[in] nnpe Number of nodes per element
      61                 :            : //! \return Linked lists storing elements surrounding points
      62                 :            : //! \warning It is not okay to call this function with an empty container or a
      63                 :            : //!   non-positive number of nodes per element; it will throw an exception.
      64                 :            : //! \details The data generated here is stored in a linked list, more precisely,
      65                 :            : //!   two linked arrays (vectors), _esup1_ and _esup2_, where _esup2_ holds the
      66                 :            : //!   indices at which _esup1_ holds the element ids surrounding points. Looping
      67                 :            : //!   over all elements surrounding all points can then be accomplished by the
      68                 :            : //!   following loop:
      69                 :            : //!   \code{.cpp}
      70                 :            : //!     for (std::size_t p=0; p<npoin; ++p)
      71                 :            : //!       for (auto i=esup.second[p]+1; i<=esup.second[p+1]; ++i)
      72                 :            : //!          use element id esup.first[i]
      73                 :            : //!   \endcode
      74                 :            : //!     To find out the number of points, _npoin_, the mesh connectivity,
      75                 :            : //!     _inpoel_, can be queried:
      76                 :            : //!   \code{.cpp}
      77                 :            : //!     auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
      78                 :            : //!     Assert( *minmax.first == 0, "node ids should start from zero" );
      79                 :            : //!     auto npoin = *minmax.second + 1;
      80                 :            : //!   \endcode
      81                 :            : //! \note In principle, this function *should* work for any positive nnpe,
      82                 :            : //!   however, only nnpe = 4 (tetrahedra) and nnpe = 3 (triangles) are tested.
      83                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
      84                 :            : // *****************************************************************************
      85                 :            : {
      86                 :            :   Assert( !inpoel.empty(), "Attempt to call genEsup() on empty container" );
      87                 :            :   Assert( nnpe > 0, "Attempt to call genEsup() with zero nodes per element" );
      88                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
      89                 :            : 
      90                 :            :   // find out number of points in mesh connectivity
      91                 :       7634 :   auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
      92                 :            :   Assert( *minmax.first == 0, "node ids should start from zero" );
      93                 :       7634 :   auto npoin = *minmax.second + 1;
      94                 :            : 
      95                 :            :   // allocate one of the linked lists storing elements surrounding points: esup2
      96                 :            :   // fill with zeros
      97                 :       7634 :   std::vector< std::size_t > esup2( npoin+1, 0 );
      98                 :            : 
      99                 :            :   // element pass 1: count number of elements connected to each point
     100         [ +  + ]:   14914882 :   for (auto n : inpoel) ++esup2[ n + 1 ];
     101                 :            : 
     102                 :            :   // storage/reshuffling pass 1: update storage counter and store
     103                 :            :   // also find out the maximum size of esup1 (mesup)
     104                 :       7634 :   auto mesup = esup2[0]+1;
     105         [ +  + ]:    1063872 :   for (std::size_t i=1; i<npoin+1; ++i) {
     106                 :    1056238 :     esup2[i] += esup2[i-1];
     107                 :    1056238 :     if (esup2[i]+1 > mesup) mesup = esup2[i]+1;
     108                 :            :   }
     109                 :            : 
     110                 :            :   // now we know mesup, so allocate the other one of the linked lists storing
     111                 :            :   // elements surrounding points: esup1
     112         [ +  - ]:       7634 :   std::vector< std::size_t > esup1( mesup );
     113                 :            : 
     114                 :            :   // store the elements in esup1
     115                 :            :   std::size_t e = 0;
     116         [ +  + ]:   14914882 :   for (auto n : inpoel) {
     117                 :   14907248 :     auto j = esup2[n]+1;
     118                 :   14907248 :     esup2[n] = j;
     119                 :   14907248 :     esup1[j] = e/nnpe;
     120                 :   14907248 :     ++e;
     121                 :            :   }
     122                 :            : 
     123                 :            :   // storage/reshuffling pass 2
     124         [ +  + ]:    1063872 :   for (auto i=npoin; i>0; --i) esup2[i] = esup2[i-1];
     125                 :       7634 :   esup2[0] = 0;
     126                 :            : 
     127                 :            :   // Return (move out) linked lists
     128                 :       7634 :   return std::make_pair( std::move(esup1), std::move(esup2) );
     129                 :            : }
     130                 :            : 
     131                 :            : std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
     132                 :       4951 : genPsup( const std::vector< std::size_t >& inpoel,
     133                 :            :          std::size_t nnpe,
     134                 :            :          const std::pair< std::vector< std::size_t >,
     135                 :            :                           std::vector< std::size_t > >& esup )
     136                 :            : // *****************************************************************************
     137                 :            : //  Generate derived data structure, points surrounding points
     138                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
     139                 :            : //!   node ids of each element of an unstructured mesh. Example:
     140                 :            : //!   \code{.cpp}
     141                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
     142                 :            : //!                                         10, 14, 13, 12 };
     143                 :            : //!   \endcode
     144                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
     145                 :            : //!   and { 10, 14, 13, 12 }.
     146                 :            : //! \param[in] nnpe Number of nodes per element
     147                 :            : //! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
     148                 :            : //! \return Linked lists storing points surrounding points
     149                 :            : //! \warning It is not okay to call this function with an empty container for
     150                 :            : //!   inpoel or esup.first or esup.second or a non-positive number of nodes per
     151                 :            : //!   element; it will throw an exception.
     152                 :            : //! \details The data generated here is stored in a linked list, more precisely,
     153                 :            : //!   two linked arrays (vectors), _psup1_ and _psup2_, where _psup2_ holds the
     154                 :            : //!   indices at which _psup1_ holds the point ids surrounding points. Looping
     155                 :            : //!   over all points surrounding all points can then be accomplished by the
     156                 :            : //!   following loop:
     157                 :            : //!   \code{.cpp}
     158                 :            : //!     for (std::size_t p=0; p<npoin; ++p)
     159                 :            : //!       for (auto i=psup.second[p]+1; i<=psup.second[p+1]; ++i)
     160                 :            : //!          use point id psup.first[i]
     161                 :            : //!   \endcode
     162                 :            : //!    To find out the number of points, _npoin_, the mesh connectivity,
     163                 :            : //!    _inpoel_, can be queried:
     164                 :            : //!   \code{.cpp}
     165                 :            : //!     auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
     166                 :            : //!     Assert( *minmax.first == 0, "node ids should start from zero" );
     167                 :            : //!     auto npoin = *minmax.second + 1;
     168                 :            : //!   \endcode
     169                 :            : //!   or the length-1 of the generated index list:
     170                 :            : //!   \code{.cpp}
     171                 :            : //!     auto npoin = psup.second.size()-1;
     172                 :            : //!   \endcode
     173                 :            : //! \note In principle, this function *should* work for any positive nnpe,
     174                 :            : //!   however, only nnpe = 4 (tetrahedra) and nnpe = 3 (triangles) are tested.
     175                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
     176                 :            : // *****************************************************************************
     177                 :            : {
     178                 :            :   Assert( !inpoel.empty(), "Attempt to call genPsup() on empty container" );
     179                 :            :   Assert( nnpe > 0, "Attempt to call genPsup() with zero nodes per element" );
     180                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
     181                 :            :   Assert( !esup.first.empty(), "Attempt to call genPsup() with empty esup1" );
     182                 :            :   Assert( !esup.second.empty(), "Attempt to call genPsup() with empty esup2" );
     183                 :            : 
     184                 :            :   // find out number of points in mesh connectivity
     185                 :       4951 :   auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
     186                 :            :   Assert( *minmax.first == 0, "node ids should start from zero" );
     187                 :       4951 :   auto npoin = *minmax.second + 1;
     188                 :            : 
     189                 :            :   auto& esup1 = esup.first;
     190                 :            :   auto& esup2 = esup.second;
     191                 :            : 
     192                 :            :   // allocate both of the linked lists storing points surrounding points, we
     193                 :            :   // only know the size of psup2, put in a single zero in psup1
     194 [ +  - ][ -  - ]:       4951 :   std::vector< std::size_t > psup2( npoin+1 ), psup1( 1, 0 );
     195                 :            : 
     196                 :            :   // allocate and fill with zeros a temporary array, only used locally
     197 [ +  - ][ -  - ]:       4951 :   std::vector< std::size_t > lpoin( npoin, 0 );
     198                 :            : 
     199                 :            :   // fill both psup1 and psup2
     200                 :       4951 :   psup2[0] = 0;
     201                 :            :   std::size_t j = 0;
     202         [ +  + ]:     636817 :   for (std::size_t p=0; p<npoin; ++p) {
     203         [ +  + ]:    8907142 :     for (std::size_t i=esup2[p]+1; i<=esup2[p+1]; ++i ) {
     204         [ +  + ]:   41376092 :       for (std::size_t n=0; n<nnpe; ++n) {
     205                 :   33100816 :         auto q = inpoel[ esup1[i] * nnpe + n ];
     206 [ +  + ][ +  + ]:   33100816 :         if (q != p && lpoin[q] != p+1) {
     207                 :    6396398 :           ++j;
     208         [ +  - ]:    6396398 :           psup1.push_back( q );
     209                 :    6396398 :           lpoin[q] = p+1;
     210                 :            :         }
     211                 :            :       }
     212                 :            :     }
     213                 :     631866 :     psup2[p+1] = j;
     214                 :            :   }
     215                 :            : 
     216                 :            :   // sort point ids for each point in psup1
     217         [ +  + ]:     636817 :   for (std::size_t p=0; p<npoin; ++p)
     218         [ -  + ]:    1263732 :     std::sort(
     219         [ -  + ]:     631866 :       std::next( begin(psup1), static_cast<std::ptrdiff_t>(psup2[p]+1) ),
     220         [ -  + ]:     631866 :       std::next( begin(psup1), static_cast<std::ptrdiff_t>(psup2[p+1]+1) ) );
     221                 :            : 
     222                 :            :   // Return (move out) linked lists
     223                 :       4951 :   return std::make_pair( std::move(psup1), std::move(psup2) );
     224                 :            : }
     225                 :            : 
     226                 :            : std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
     227                 :          6 : genEdsup( const std::vector< std::size_t >& inpoel,
     228                 :            :           std::size_t nnpe,
     229                 :            :           const std::pair< std::vector< std::size_t >,
     230                 :            :                            std::vector< std::size_t > >& esup )
     231                 :            : // *****************************************************************************
     232                 :            : //  Generate derived data structure, edges surrounding points
     233                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
     234                 :            : //!   node ids of each element of an unstructured mesh. Example:
     235                 :            : //!   \code{.cpp}
     236                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
     237                 :            : //!                                         10, 14, 13, 12 };
     238                 :            : //!   \endcode
     239                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
     240                 :            : //!   and { 10, 14, 13, 12 }.
     241                 :            : //! \param[in] nnpe Number of nodes per element (3 or 4)
     242                 :            : //! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
     243                 :            : //! \return Linked lists storing edges (point ids p < q) emanating from points
     244                 :            : //! \warning It is not okay to call this function with an empty container for
     245                 :            : //!   inpoel or esup.first or esup.second or a non-positive number of nodes per
     246                 :            : //!   element; it will throw an exception.
     247                 :            : //! \details The data generated here is stored in a linked list, more precisely,
     248                 :            : //!   two linked arrays (vectors), _edsup1_ and _edsup2_, where _edsup2_ holds
     249                 :            : //!   the indices at which _edsup1_ holds the edge-end point ids emanating from
     250                 :            : //!   points for all points. The generated data structure, linked lists edsup1
     251                 :            : //!   and edsup2, are very similar to psup1 and psup2, generated by genPsup(),
     252                 :            : //!   except here only unique edges are stored, i.e., for edges with point ids
     253                 :            : //!   p < q, only ids q are stored that are still associated to point p. Looping
     254                 :            : //!   over all unique edges can then be accomplished by the following loop:
     255                 :            : //!   \code{.cpp}
     256                 :            : //!     for (std::size_t p=0; p<npoin; ++p)
     257                 :            : //!       for (auto i=edsup.second[p]+1; i<=edsup.second[p+1]; ++i)
     258                 :            : //!         use edge with point ids p < edsup.first[i]
     259                 :            : //!   \endcode
     260                 :            : //!   To find out the number of points, _npoin_, the mesh connectivity,
     261                 :            : //!   _inpoel_, can be queried:
     262                 :            : //!   \code{.cpp}
     263                 :            : //!     auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
     264                 :            : //!     Assert( *minmax.first == 0, "node ids should start from zero" );
     265                 :            : //!     auto npoin = *minmax.second + 1;
     266                 :            : //!   \endcode
     267                 :            : //! \note At first sight, this function seems to work for elements with more
     268                 :            : //!   vertices than that of tetrahedra. However, that is not the case since the
     269                 :            : //!   algorithm for nnpe > 4 would erronously identify any two combination of
     270                 :            : //!   vertices as a valid edge of an element. Since only triangles and
     271                 :            : //!   tetrahedra have no internal edges, this algorithm only works for triangle
     272                 :            : //!   and tetrahedra element connectivity.
     273                 :            : //! \see tk::genInpoed for similar data that sometimes may be more advantageous
     274                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
     275                 :            : // *****************************************************************************
     276                 :            : {
     277                 :            :   Assert( !inpoel.empty(), "Attempt to call genEdsup() on empty container" );
     278                 :            :   Assert( nnpe > 0, "Attempt to call genEdsup() with zero nodes per element" );
     279                 :            :   Assert( nnpe == 3 || nnpe == 4,
     280                 :            :           "Attempt to call genEdsup() with nodes per element, nnpe, that is "
     281                 :            :           "neither 4 (tetrahedra) nor 3 (triangles)." );
     282                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
     283                 :            :   Assert( !esup.first.empty(), "Attempt to call genEdsup() with empty esup1" );
     284                 :            :   Assert( !esup.second.empty(), "Attempt to call genEdsup() with empty esup2" );
     285                 :            : 
     286                 :            :   // find out number of points in mesh connectivity
     287                 :          6 :   auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
     288                 :            :   Assert( *minmax.first == 0, "node ids should start from zero" );
     289                 :          6 :   auto npoin = *minmax.second + 1;
     290                 :            : 
     291                 :            :   const auto& esup1 = esup.first;
     292                 :            :   const auto& esup2 = esup.second;
     293                 :            : 
     294                 :            :   // allocate and fill with zeros a temporary array, only used locally
     295                 :          6 :   std::vector< std::size_t > lpoin( npoin, 0 );
     296                 :            : 
     297                 :            :   // map to contain stars, a point associated to points connected with edges
     298                 :            :   // storing only the end-point id, q, of point ids p < q
     299                 :            :   std::map< std::size_t, std::vector< std::size_t > > star;
     300                 :            : 
     301                 :            :   // generate edge connectivity and store as stars where center id < spike id
     302         [ +  + ]:         90 :   for (std::size_t p=0; p<npoin; ++p)
     303         [ +  + ]:        588 :     for (std::size_t i=esup2[p]+1; i<=esup2[p+1]; ++i )
     304         [ +  + ]:       2304 :       for (std::size_t n=0; n<nnpe; ++n) {
     305                 :       1800 :         auto q = inpoel[ esup1[i] * nnpe + n ];
     306 [ +  + ][ +  + ]:       1800 :         if (q != p && lpoin[q] != p+1) {
     307 [ +  + ][ +  - ]:        510 :           if (p < q) star[p].push_back(q);
                 [ +  - ]
     308                 :        510 :           lpoin[q] = p+1;
     309                 :            :         }
     310                 :            :       }
     311                 :            : 
     312                 :            :   // linked lists (vectors) to store edges surrounding points and their indices
     313 [ +  - ][ +  - ]:          6 :   std::vector< std::size_t > edsup1( 1, 0 ), edsup2( 1, 0 );
                 [ -  - ]
     314                 :            : 
     315                 :            :   // sort non-center points of each star and store nodes and indices in vectors
     316         [ +  + ]:         69 :   for (auto& p : star) {
     317         [ +  - ]:         63 :     std::sort( begin(p.second), end(p.second) );
     318 [ +  - ][ +  - ]:         63 :     edsup2.push_back( edsup2.back() + p.second.size() );
     319 [ +  - ][ -  - ]:         63 :     edsup1.insert( end(edsup1), begin(p.second), end(p.second) );
     320                 :            :   }
     321                 :            :   // fill up index array with the last index for points with no new edges
     322         [ +  + ]:         27 :   for (std::size_t i=0; i<npoin-star.size(); ++i)
     323         [ +  - ]:         21 :     edsup2.push_back( edsup2.back() );
     324                 :            : 
     325                 :            :   // Return (move out) linked lists
     326                 :          6 :   return std::make_pair( std::move(edsup1), std::move(edsup2) );
     327                 :            : }
     328                 :            : 
     329                 :            : std::vector< std::size_t >
     330                 :         14 : genInpoed( const std::vector< std::size_t >& inpoel,
     331                 :            :            std::size_t nnpe,
     332                 :            :            const std::pair< std::vector< std::size_t >,
     333                 :            :                             std::vector< std::size_t > >& esup )
     334                 :            : // *****************************************************************************
     335                 :            : //  Generate derived data structure, edge connectivity
     336                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
     337                 :            : //!   node ids of each element of an unstructured mesh. Example:
     338                 :            : //!   \code{.cpp}
     339                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
     340                 :            : //!                                         10, 14, 13, 12 };
     341                 :            : //!   \endcode
     342                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
     343                 :            : //!   and { 10, 14, 13, 12 }.
     344                 :            : //! \param[in] nnpe Number of nodes per element (3 or 4)
     345                 :            : //! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
     346                 :            : //! \return Linear vector storing edge connectivity (point ids p < q)
     347                 :            : //! \warning It is not okay to call this function with an empty container for
     348                 :            : //!   inpoel or esup.first or esup.second or a non-positive number of nodes per
     349                 :            : //!   element; it will throw an exception.
     350                 :            : //! \details The data generated here is stored in a linear vector and is very
     351                 :            : //!   similar to the linked lists, _edsup1_ and _edsup2, generated by
     352                 :            : //!   genEdsup(). The difference is that in the linear vector, inpoed, generated
     353                 :            : //!   here, both edge point ids are stored as a pair, p < q, as opposed to the
     354                 :            : //!   linked lists edsup1 and edsup2, in which edsup1 only stores the edge-end
     355                 :            : //!   point ids (still associated to edge-start point ids when used together
     356                 :            : //!   with edsup2). The rationale is that while inpoed is larger in memory, it
     357                 :            : //!   allows direct access to edges (pair of point ids making up an edge),
     358                 :            : //!   edsup1 and edsup2 are smaller in memory, still allow accessing the same
     359                 :            : //!   data (edge point id pairs) but only in a linear fashion, not by direct
     360                 :            : //!   access to particular edges. Accessing all unique edges using the edge
     361                 :            : //!   connectivity data structure, inpoed, generated here can be accomplished by
     362                 :            : //!   \code{.cpp}
     363                 :            : //!     for (std::size_t e=0; e<inpoed.size()/2; ++e) {
     364                 :            : //!       use point id p of edge e = inpoed[e*2];
     365                 :            : //!       use point id q of edge e = inpoed[e*2+1];
     366                 :            : //!     }
     367                 :            : //!   \endcode
     368                 :            : //! \note At first sight, this function seems to work for elements with more
     369                 :            : //!   vertices than that of tetrahedra. However, that is not the case since the
     370                 :            : //!   algorithm for nnpe > 4 would erronously identify any two combination of
     371                 :            : //!   vertices as a valid edge of an element. Since only triangles and
     372                 :            : //!   tetrahedra have no internal edges, this algorithm only works for triangle
     373                 :            : //!   and tetrahedra element connectivity.
     374                 :            : //! \see tk::genEdsup for similar data that sometimes may be more advantageous
     375                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
     376                 :            : // *****************************************************************************
     377                 :            : {
     378                 :            :   Assert( !inpoel.empty(), "Attempt to call genInpoed() on empty container" );
     379                 :            :   Assert( nnpe > 0, "Attempt to call genInpoed() with zero nodes per element" );
     380                 :            :   Assert( nnpe == 3 || nnpe == 4,
     381                 :            :           "Attempt to call genInpoed() with nodes per element, nnpe, that is "
     382                 :            :           "neither 4 (tetrahedra) nor 3 (triangles)." );
     383                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
     384                 :            :   Assert( !esup.first.empty(), "Attempt to call genInpoed() with empty esup1" );
     385                 :            :   Assert( !esup.second.empty(),
     386                 :            :           "Attempt to call genInpoed() with empty esup2" );
     387                 :            : 
     388                 :            :   // find out number of points in mesh connectivity
     389                 :         14 :   auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
     390                 :            :   Assert( *minmax.first == 0, "node ids should start from zero" );
     391                 :         14 :   auto npoin = *minmax.second + 1;
     392                 :            : 
     393                 :            :   const auto& esup1 = esup.first;
     394                 :            :   const auto& esup2 = esup.second;
     395                 :            : 
     396                 :            :   // allocate and fill with zeros a temporary array, only used locally
     397                 :         14 :   std::vector< std::size_t > lpoin( npoin, 0 );
     398                 :            : 
     399                 :            :   // map to contain stars, a point associated to points connected with edges,
     400                 :            :   // storing only the end-point id, q, of point ids p < q
     401                 :            :   std::map< std::size_t, std::vector< std::size_t > > star;
     402                 :            : 
     403                 :            :   // generate edge connectivity and store as stars where center id < spike id
     404         [ +  + ]:        210 :   for (std::size_t p=0; p<npoin; ++p)
     405         [ +  + ]:       1444 :     for (std::size_t i=esup2[p]+1; i<=esup2[p+1]; ++i )
     406         [ +  + ]:       5952 :       for (std::size_t n=0; n<nnpe; ++n) {
     407                 :       4704 :         auto q = inpoel[ esup1[i] * nnpe + n ];
     408 [ +  + ][ +  + ]:       4704 :         if (q != p && lpoin[q] != p+1) {
     409 [ +  + ][ +  - ]:       1268 :           if (p < q) star[p].push_back( q );
                 [ +  - ]
     410                 :       1268 :           lpoin[q] = p+1;
     411                 :            :         }
     412                 :            :       }
     413                 :            : 
     414                 :            :   // linear vector to store edge connectivity and their indices
     415                 :            :   std::vector< std::size_t > inpoed;
     416                 :            : 
     417                 :            :   // sort non-center points of each star and store both start and end points of
     418                 :            :   // each star in linear vector
     419         [ +  + ]:        176 :   for (auto& p : star) {
     420                 :        162 :     std::sort( begin(p.second), end(p.second) );
     421         [ +  + ]:        796 :     for (auto e : p.second) {
     422         [ +  - ]:        634 :       inpoed.push_back( p.first );
     423         [ +  - ]:        634 :       inpoed.push_back( e );
     424                 :            :     }
     425                 :            :   }
     426                 :            : 
     427                 :            :   // Return (move out) linear vector
     428                 :         14 :   return inpoed;
     429                 :            : }
     430                 :            : 
     431                 :            : std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
     432                 :          8 : genEsupel( const std::vector< std::size_t >& inpoel,
     433                 :            :            std::size_t nnpe,
     434                 :            :            const std::pair< std::vector< std::size_t >,
     435                 :            :                             std::vector< std::size_t > >& esup )
     436                 :            : // *****************************************************************************
     437                 :            : //  Generate derived data structure, elements surrounding points of elements
     438                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
     439                 :            : //!   node ids of each element of an unstructured mesh. Example:
     440                 :            : //!   \code{.cpp}
     441                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
     442                 :            : //!                                         10, 14, 13, 12 };
     443                 :            : //!   \endcode
     444                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
     445                 :            : //!   and { 10, 14, 13, 12 }.
     446                 :            : //! \param[in] nnpe Number of nodes per element
     447                 :            : //! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
     448                 :            : //! \return Linked lists storing elements surrounding points of elements
     449                 :            : //! \warning It is not okay to call this function with an empty container for
     450                 :            : //!   inpoel or esup.first or esup.second or a non-positive number of nodes per
     451                 :            : //!   element; it will throw an exception.
     452                 :            : //! \details The data generated here is stored in a linked list, more precisely,
     453                 :            : //!   two linked arrays (vectors), _esupel1_ and _esupel2_, where _esupel2_
     454                 :            : //!   holds the indices at which _esupel1_ holds the element ids surrounding
     455                 :            : //!   points of elements. Looping over all elements surrounding the points of
     456                 :            : //!   all elements can then be accomplished by the following loop:
     457                 :            : //!   \code{.cpp}
     458                 :            : //!     for (std::size_t e=0; e<nelem; ++e)
     459                 :            : //!       for (auto i=esupel.second[e]+1; i<=esupel.second[e+1]; ++i)
     460                 :            : //!          use element id esupel.first[i]
     461                 :            : //!   \endcode
     462                 :            : //!   To find out the number of elements, _nelem_, the size of the mesh
     463                 :            : //!   connectivity vector, _inpoel_, can be devided by the number of nodes per
     464                 :            : //!   elements, _nnpe_:
     465                 :            : //!   \code{.cpp}
     466                 :            : //!     auto nelem = inpoel.size()/nnpe;
     467                 :            : //!   \endcode
     468                 :            : //! \note In principle, this function *should* work for any positive nnpe,
     469                 :            : //!   however, only nnpe = 4 (tetrahedra) and nnpe = 3 (triangles) are tested.
     470                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
     471                 :            : // *****************************************************************************
     472                 :            : {
     473                 :            :   Assert( !inpoel.empty(), "Attempt to call genEsupel() on empty container" );
     474                 :            :   Assert( nnpe > 0, "Attempt to call genEsupel() with zero nodes per element" );
     475                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
     476                 :            :   Assert( !esup.first.empty(), "Attempt to call genEsupel() with empty esup1" );
     477                 :            :   Assert( !esup.second.empty(),
     478                 :            :           "Attempt to call genEsupel() with empty esup2" );
     479                 :            : 
     480                 :            :   const auto& esup1 = esup.first;
     481                 :            :   const auto& esup2 = esup.second;
     482                 :            : 
     483                 :            :   // linked lists storing elements surrounding points of elements, put in a
     484                 :            :   // single zero in both
     485 [ +  - ][ -  - ]:          8 :   std::vector< std::size_t > esupel2( 1, 0 ), esupel1( 1, 0 );
     486                 :            : 
     487                 :            :   std::size_t e = 0;
     488                 :            :   std::set< std::size_t > esuel;
     489         [ +  + ]:        526 :   for (auto p : inpoel) {       // loop over all points of all elements
     490                 :            :     // collect unique element ids of elements surrounding points of element
     491         [ +  + ]:       4136 :     for (auto i=esup2[p]+1; i<=esup2[p+1]; ++i) esuel.insert( esup1[i] );
     492         [ +  + ]:        518 :     if (++e%nnpe == 0) {        // when finished checking all nodes of element
     493                 :            :       // erase element whose surrounding elements are considered
     494         [ +  - ]:        146 :       esuel.erase( e/nnpe-1 );
     495                 :            :       // store unique element ids in esupel1
     496 [ +  - ][ +  - ]:        146 :       esupel1.insert( end(esupel1), begin(esuel), end(esuel) );
     497                 :            :       // store end-index for element used to address into esupel1
     498         [ +  - ]:        146 :       esupel2.push_back( esupel2.back() + esuel.size() );
     499                 :            :       esuel.clear();
     500                 :            :     }
     501                 :            :   }
     502                 :            : 
     503                 :            :   // Return (move out) linked lists
     504                 :          8 :   return std::make_pair( std::move(esupel1), std::move(esupel2) );
     505                 :            : }
     506                 :            : 
     507                 :            : std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
     508                 :          8 : genEsuel( const std::vector< std::size_t >& inpoel,
     509                 :            :           std::size_t nnpe,
     510                 :            :           const std::pair< std::vector< std::size_t >,
     511                 :            :                            std::vector< std::size_t > >& esup )
     512                 :            : // *****************************************************************************
     513                 :            : //  Generate derived data structure, elements surrounding elements
     514                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
     515                 :            : //!   node ids of each element of an unstructured mesh. Example:
     516                 :            : //!   \code{.cpp}
     517                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
     518                 :            : //!                                         10, 14, 13, 12 };
     519                 :            : //!   \endcode
     520                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
     521                 :            : //!   and { 10, 14, 13, 12 }.
     522                 :            : //! \param[in] nnpe Number of nodes per element
     523                 :            : //! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
     524                 :            : //! \return Linked lists storing elements surrounding elements
     525                 :            : //! \warning It is not okay to call this function with an empty container for
     526                 :            : //!   inpoel or esup.first or esup.second; it will throw an exception.
     527                 :            : //! \details The data generated here is stored in a linked list, more precisely,
     528                 :            : //!   two linked arrays (vectors), _esuel1_ and _esuel2_, where _esuel2_ holds
     529                 :            : //!   the indices at which _esuel1_ holds the element ids surrounding elements.
     530                 :            : //!   Looping over elements surrounding elements can then be accomplished by the
     531                 :            : //!   following loop:
     532                 :            : //!   \code{.cpp}
     533                 :            : //!     for (std::size_t e=0; e<nelem; ++e)
     534                 :            : //!       for (auto i=esuel.second[e]+1; i<=esuel.second[e+1]; ++i)
     535                 :            : //!          use element id esuel.first[i]
     536                 :            : //!   \endcode
     537                 :            : //!   To find out the number of elements, _nelem_, the size of the mesh
     538                 :            : //!   connectivity vector, _inpoel_, can be devided by the number of nodes per
     539                 :            : //!   elements, _nnpe_:
     540                 :            : //!   \code{.cpp}
     541                 :            : //!     auto nelem = inpoel.size()/nnpe;
     542                 :            : //!   \endcode
     543                 :            : //! \note In principle, this function *should* work for any positive nnpe,
     544                 :            : //!   however, only nnpe = 4 (tetrahedra) and nnpe = 3 (triangles) are tested.
     545                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
     546                 :            : // *****************************************************************************
     547                 :            : {
     548                 :            :   Assert( !inpoel.empty(), "Attempt to call genEsuel() on empty container" );
     549                 :            :   Assert( nnpe > 0, "Attempt to call genEsuel() with zero nodes per element" );
     550                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by four" );
     551                 :            :   Assert( !esup.first.empty(), "Attempt to call genEsuel() with empty esuel1" );
     552                 :            :   Assert( !esup.second.empty(),
     553                 :            :           "Attempt to call genEsuel() with empty esuel2" );
     554                 :            : 
     555                 :            :   const auto& esup1 = esup.first;
     556                 :            :   const auto& esup2 = esup.second;
     557                 :            : 
     558                 :          8 :   auto nelem = inpoel.size()/nnpe;
     559                 :            : 
     560                 :            :   // lambda that returns 1 if elements hel and gel share a face
     561                 :      69984 :   auto adj = [ &inpoel, nnpe ]( std::size_t hel, std::size_t gel ) -> bool {
     562                 :            :     std::size_t sp = 0;
     563         [ +  + ]:      16848 :     for (std::size_t h=0; h<nnpe; ++h)
     564         [ +  + ]:      62784 :       for (std::size_t g=0; g<nnpe; ++g)
     565         [ +  + ]:      49536 :         if (inpoel[hel*nnpe+h] == inpoel[gel*nnpe+g]) ++sp;
     566         [ +  + ]:       3600 :     if (sp == nnpe-1) return true; else return false;
     567                 :          8 :   };
     568                 :            : 
     569                 :            :   // map to associate unique elements and their surrounding elements
     570                 :            :   std::map< std::size_t, std::vector< std::size_t > > es;
     571                 :            : 
     572         [ +  + ]:        152 :   for (std::size_t e=0; e<nelem; ++e) {
     573                 :            :     std::set< std::size_t > faces; // will collect elem ids of shared faces
     574         [ +  + ]:        648 :     for (std::size_t n=0; n<nnpe; ++n) {
     575                 :        504 :       auto i = inpoel[ e*nnpe+n ];
     576         [ +  + ]:       4104 :       for (auto j=esup2[i]+1; j<=esup2[i+1]; ++j)
     577         [ +  + ]:       3600 :         if (adj( e, esup1[j] )) faces.insert( esup1[j] );
     578                 :            :     }
     579                 :            :     // store element ids of shared faces
     580 [ +  - ][ +  - ]:        576 :     for (auto j : faces) es[e].push_back(j);
                 [ +  + ]
     581                 :            :   }
     582                 :            : 
     583                 :            :   // storing elements surrounding elements
     584 [ +  - ][ +  - ]:          8 :   std::vector< std::size_t > esuel1( 1, 0 ), esuel2( 1, 0 );
                 [ -  - ]
     585                 :            : 
     586                 :            :   // store elements surrounding elements in linked lists
     587         [ +  + ]:        152 :   for (const auto& e : es) {
     588 [ +  - ][ +  - ]:        144 :     esuel2.push_back( esuel2.back() + e.second.size() );
     589 [ +  - ][ -  - ]:        144 :     esuel1.insert( end(esuel1), begin(e.second), end(e.second) );
     590                 :            :   }
     591                 :            : 
     592                 :            :   // Return (move out) linked lists
     593                 :          8 :   return std::make_pair( std::move(esuel1), std::move(esuel2) );
     594                 :            : }
     595                 :            : 
     596                 :            : std::vector< std::size_t >
     597                 :          4 : genInedel( const std::vector< std::size_t >& inpoel,
     598                 :            :            std::size_t nnpe,
     599                 :            :            const std::vector< std::size_t >& inpoed )
     600                 :            : // *****************************************************************************
     601                 :            : //  Generate derived data structure, edges of elements
     602                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
     603                 :            : //!   node ids of each element of an unstructured mesh. Example:
     604                 :            : //!   \code{.cpp}
     605                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
     606                 :            : //!                                         10, 14, 13, 12 };
     607                 :            : //!   \endcode
     608                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
     609                 :            : //!   and { 10, 14, 13, 12 }.
     610                 :            : //! \param[in] nnpe Number of nodes per element
     611                 :            : //! \param[in] inpoed Edge connectivity as linear vector, see tk::genInpoed
     612                 :            : //! \return Linear vector storing all edge ids * 2 of all elements
     613                 :            : //! \warning It is not okay to call this function with an empty container for
     614                 :            : //!   inpoel or inpoed or a non-positive number of nodes per element; it will
     615                 :            : //!   throw an exception.
     616                 :            : //! \details The data generated here is stored in a linear vector with all
     617                 :            : //!   edge ids (as defined by inpoed) of all elements. The edge ids stored in
     618                 :            : //!   inedel can be directly used to index the vector inpoed. Because the
     619                 :            : //!   derived data structure generated here, inedel, is intended to be used in
     620                 :            : //!   conjunction with the linear vector inpoed and not with the linked lists
     621                 :            : //!   edsup1 and edsup2, this function takes inpoed as an argument. Accessing
     622                 :            : //!   the edges of element e using the edge of elements data structure, inedel,
     623                 :            : //!   generated here can be accomplished by
     624                 :            : //!   \code{.cpp}
     625                 :            : //!     for (std::size_t e=0; e<nelem; ++e) {
     626                 :            : //!       for (std::size_t i=0; i<nepe; ++i) {
     627                 :            : //!         use edge id inedel[e*nepe+i] of element e, or
     628                 :            : //!         use point ids p < q of edge id inedel[e*nepe+i] of element e as
     629                 :            : //!           p = inpoed[ inedel[e*nepe+i]*2 ]
     630                 :            : //!           q = inpoed[ inedel[e*nepe+i]*2+1 ]
     631                 :            : //!       }
     632                 :            : //!     }
     633                 :            : //!   \endcode
     634                 :            : //!   where _nepe_ denotes the number of edges per elements: 3 for triangles, 6
     635                 :            : //!   for tetrahedra. To find out the number of elements, _nelem_, the size of
     636                 :            : //!   the mesh connectivity vector, _inpoel_, can be devided by the number of
     637                 :            : //!   nodes per elements, _nnpe_:
     638                 :            : //!   \code{.cpp}
     639                 :            : //!     auto nelem = inpoel.size()/nnpe;
     640                 :            : //!   \endcode
     641                 :            : //! \note At first sight, this function seems to work for elements with more
     642                 :            : //!   vertices than that of tetrahedra. However, that is not the case since the
     643                 :            : //!   algorithm for nnpe > 4 would erronously identify any two combination of
     644                 :            : //!   vertices as a valid edge of an element. Since only triangles and
     645                 :            : //!   tetrahedra have no internal edges, this algorithm only works for triangle
     646                 :            : //!   and tetrahedra element connectivity.
     647                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
     648                 :            : // *****************************************************************************
     649                 :            : {
     650                 :            :   Assert( !inpoel.empty(), "Attempt to call genInedel() on empty container" );
     651                 :            :   Assert( nnpe > 0, "Attempt to call genInedel() with zero nodes per element" );
     652                 :            :   Assert( nnpe == 3 || nnpe == 4,
     653                 :            :           "Attempt to call genInedel() with nodes per element, nnpe, that is "
     654                 :            :           "neither 4 (tetrahedra) nor 3 (triangles)." );
     655                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
     656                 :            :   Assert( !inpoed.empty(), "Attempt to call genInedel() with empty inpoed" );
     657                 :            : 
     658                 :            :   // find out number of points in mesh connectivity
     659                 :          4 :   auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
     660                 :            :   Assert( *minmax.first == 0, "node ids should start from zero" );
     661                 :          4 :   auto npoin = *minmax.second + 1;
     662                 :            : 
     663                 :            :   // First, generate index of star centers. This is necessary to avoid a
     664                 :            :   // brute-force search for point ids of edges when searching for element edges.
     665                 :            :   // Note that this is the same as edsup2, generated by genEdsup(). However,
     666                 :            :   // because the derived data structure generated here, inedel, is intended to
     667                 :            :   // be used in conjunction with the linear vector inpoed and not with the
     668                 :            :   // linked lists edsup1 and edsup2, this function takes inpoed as an argument,
     669                 :            :   // and so edsup2 is temporarily generated here to avoid a brute-force search.
     670                 :            : 
     671                 :            :   // map to contain stars, a point associated to points connected with edges
     672                 :            :   // storing only the end-point id, q, of point ids p < q
     673                 :            :   std::map< std::size_t, std::vector< std::size_t > > star;
     674                 :            : 
     675                 :            :   // generate stars from inpoed; starting with zero, every even is a star
     676                 :            :   // center, every odd is a spike
     677         [ +  + ]:        174 :   for (std::size_t i=0; i<inpoed.size()/2; ++i)
     678 [ +  - ][ +  - ]:        170 :     star[ inpoed[i*2] ].push_back( inpoed[i*2+1] );
     679                 :            : 
     680                 :            :   // store index of star centers in vector; assume non-center points of each
     681                 :            :   // star have already been sorted
     682         [ +  - ]:          4 :   std::vector< std::size_t > edsup2( 1, 0 );
     683 [ +  - ][ +  + ]:         46 :   for (const auto& p : star) edsup2.push_back(edsup2.back() + p.second.size());
                 [ -  - ]
     684                 :            :   // fill up index array with the last index for points with no new edges
     685         [ +  + ]:         18 :   for (std::size_t i=0; i<npoin-star.size(); ++i)
     686         [ +  - ]:         14 :     edsup2.push_back( edsup2.back() );
     687                 :            :   star.clear();
     688                 :            : 
     689                 :            :   // Second, generate edges of elements
     690                 :            : 
     691                 :          4 :   auto nelem = inpoel.size()/nnpe;
     692                 :            : 
     693                 :            :   // map associating elem id with vector of edge ids
     694                 :            :   std::map< std::size_t, std::vector< std::size_t > > edges;
     695                 :            : 
     696                 :            :   // generate map of elements associated to edge ids
     697         [ +  + ]:        100 :   for (std::size_t e=0; e<nelem; ++e)
     698         [ +  + ]:        432 :     for (std::size_t n=0; n<nnpe; ++n) {
     699                 :        336 :       auto p = inpoel[e*nnpe+n];
     700         [ +  + ]:       1324 :       for (auto i=edsup2[p]+1; i<=edsup2[p+1]; ++i)
     701         [ +  + ]:       4508 :          for (std::size_t j=0; j<nnpe; ++j)
     702         [ +  + ]:       3520 :             if (inpoed[(i-1)*2+1] == inpoel[e*nnpe+j])
     703 [ +  - ][ +  - ]:        432 :               edges[e].push_back( i-1 );
     704                 :            :     }
     705                 :            : 
     706                 :            :   // linear vector to store the edge ids of all elements
     707         [ +  - ]:          4 :   std::vector< std::size_t > inedel( sumvalsize(edges) );
     708                 :            : 
     709                 :            :   // store edge ids of elements in linear vector
     710                 :            :   std::size_t j = 0;
     711 [ +  + ][ +  + ]:        532 :   for (const auto& e : edges) for (auto p : e.second) inedel[ j++ ] = p;
     712                 :            : 
     713                 :            :   // Return (move out) vector
     714                 :          4 :   return inedel;
     715                 :            : }
     716                 :            : 
     717                 :            : std::unordered_map< UnsMesh::Edge, std::vector< std::size_t >,
     718                 :            :                     UnsMesh::Hash<2>, UnsMesh::Eq<2> >
     719                 :          5 : genEsued( const std::vector< std::size_t >& inpoel,
     720                 :            :           std::size_t nnpe,
     721                 :            :           const std::pair< std::vector< std::size_t >,
     722                 :            :                            std::vector< std::size_t > >& esup )
     723                 :            : // *****************************************************************************
     724                 :            : //  Generate derived data structure, elements surrounding edges
     725                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
     726                 :            : //!   node ids of each element of an unstructured mesh. Example:
     727                 :            : //!   \code{.cpp}
     728                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
     729                 :            : //!                                         10, 14, 13, 12 };
     730                 :            : //!   \endcode
     731                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
     732                 :            : //!   and { 10, 14, 13, 12 }.
     733                 :            : //! \param[in] nnpe Number of nodes per element (3 or 4)
     734                 :            : //! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
     735                 :            : //! \return Associative container storing elements surrounding edges (value),
     736                 :            : //!    assigned to edge-end points (key)
     737                 :            : //! \warning It is not okay to call this function with an empty container for
     738                 :            : //!   inpoel or esup.first or esup.second or a non-positive number of nodes per
     739                 :            : //!   element; it will throw an exception.
     740                 :            : //! \details Looping over elements surrounding all edges can be accomplished by
     741                 :            : //!   the following loop:
     742                 :            : //!   \code{.cpp}
     743                 :            : //!    for (const auto& [edge,surr_elements] : esued) {
     744                 :            : //!      use element edge-end-point ids edge[0] and edge[1]
     745                 :            : //!      for (auto e : surr_elements) {
     746                 :            : //!         use element id e
     747                 :            : //!      }
     748                 :            : //!    }
     749                 :            : //!   \endcode
     750                 :            : //!   esued.size() equals the number of edges.
     751                 :            : //! \note At first sight, this function seems to work for elements with more
     752                 :            : //!   vertices than that of tetrahedra. However, that is not the case since the
     753                 :            : //!   algorithm for nnpe > 4 would erronously identify any two combination of
     754                 :            : //!   vertices as a valid edge of an element. Since only triangles and
     755                 :            : //!   tetrahedra have no internal edges, this algorithm only works for triangle
     756                 :            : //!   and tetrahedra element connectivity.
     757                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
     758                 :            : // *****************************************************************************
     759                 :            : {
     760                 :            :   Assert( !inpoel.empty(), "Attempt to call genEsued() on empty container" );
     761                 :            :   Assert( nnpe > 0, "Attempt to call genEsued() with zero nodes per element" );
     762                 :            :   Assert( nnpe == 3 || nnpe == 4,
     763                 :            :           "Attempt to call genEsued() with nodes per element, nnpe, that is "
     764                 :            :           "neither 4 (tetrahedra) nor 3 (triangles)." );
     765                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
     766                 :            :   Assert( !esup.first.empty(), "Attempt to call genEsued() with empty esup1" );
     767                 :            :   Assert( !esup.second.empty(), "Attempt to call genEsued() with empty esup2" );
     768                 :            : 
     769                 :            :   // find out number of points in mesh connectivity
     770                 :          5 :   auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
     771                 :            :   Assert( *minmax.first == 0, "node ids should start from zero" );
     772                 :          5 :   auto npoin = *minmax.second + 1;
     773                 :            : 
     774                 :            :   const auto& esup1 = esup.first;
     775                 :            :   const auto& esup2 = esup.second;
     776                 :            : 
     777                 :            :   // allocate and fill with zeros a temporary array, only used locally
     778                 :          5 :   std::vector< std::size_t > lpoin( npoin, 0 );
     779                 :            : 
     780                 :            :   // lambda that returns true if element e contains edge (p < q)
     781                 :            :   auto has = [ &inpoel, nnpe ]( std::size_t e, std::size_t p, std::size_t q ) {
     782                 :            :     int sp = 0;
     783         [ +  + ]:       5898 :     for (std::size_t n=0; n<nnpe; ++n)
     784 [ +  + ][ +  + ]:       4632 :       if (inpoel[e*nnpe+n] == p || inpoel[e*nnpe+n] == q) ++sp;
     785                 :            :     return sp == 2;
     786                 :            :   };
     787                 :            : 
     788                 :            :   // map to associate edges to unique surrounding element ids
     789                 :            :   std::unordered_map< UnsMesh::Edge, std::vector< std::size_t >,
     790                 :            :                       UnsMesh::Hash<2>, UnsMesh::Eq<2> > esued;
     791                 :            : 
     792                 :            :   // generate edges and associated vector of unique surrounding element ids
     793         [ +  + ]:         75 :   for (std::size_t p=0; p<npoin; ++p)
     794         [ +  + ]:        502 :     for (std::size_t i=esup2[p]+1; i<=esup2[p+1]; ++i )
     795         [ +  + ]:       2016 :       for (std::size_t n=0; n<nnpe; ++n) {
     796                 :       1584 :         auto q = inpoel[ esup1[i] * nnpe + n ];
     797 [ +  + ][ +  + ]:       1584 :         if (q != p && lpoin[q] != p+1) {
     798         [ +  + ]:        438 :           if (p < q) {  // for edge given point ids p < q
     799         [ +  + ]:       1485 :             for (std::size_t j=esup2[p]+1; j<=esup2[p+1]; ++j ) {
     800                 :       1266 :               auto e = esup1[j];
     801 [ +  + ][ +  - ]:       1266 :               if (has(e,p,q)) esued[{p,q}].push_back(e);
                 [ +  - ]
     802                 :            :             }
     803                 :            :           }
     804                 :        438 :           lpoin[q] = p+1;
     805                 :            :         }
     806                 :            :       }
     807                 :            : 
     808                 :            :   // sort element ids surrounding edges for each edge
     809         [ +  + ]:        224 :   for (auto& p : esued) std::sort( begin(p.second), end(p.second) );
     810                 :            : 
     811                 :            :   // Return elements surrounding edges data structure
     812                 :          5 :   return esued;
     813                 :            : }
     814                 :            : 
     815                 :            : std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
     816         [ +  + ]:         18 : genEdpas( int mvecl, std::size_t nnpe, std::size_t npoin,
     817                 :            :           const std::vector< std::size_t >& inpoed )
     818                 :            : // *****************************************************************************
     819                 :            : //  Generate vector-groups for edges
     820                 :            : //! \param[in] mvecl Max vector length to target
     821                 :            : //! \param[in] nnpe Number of nodes per (super-)edge
     822                 :            : //! \param[in] npoin Number mesh points
     823                 :            : //! \param[in] inpoed Edge connectivity as linear vector, see tk::genInpoed for
     824                 :            : //!            nnpe=2
     825                 :            : //! \return Linked lists storing edge-groups so that any point of a group is
     826                 :            : //!   accessed only once within a group.
     827                 :            : //! \warning It is not okay to call this function with an empty container or a
     828                 :            : //!   non-positive number of nodes per element; it will throw an exception.
     829                 :            : //! \details The data generated here is stored in a linked list, more precisely,
     830                 :            : //!   two linked arrays (vectors), _edpas1_ and _edpas2_, where _edpas2_ holds
     831                 :            : //!   the indices at which _edpas1_ holds the edge ids of a vector group.
     832                 :            : //!   Looping over all groups can then be accomplished by the following loop:
     833                 :            : //!   \code{.cpp}
     834                 :            : //!     for (std::size_t w=0; w<edpas.second.size()-1; ++w)
     835                 :            : //!       for (auto i=edpas.second[w]+1; i<=edpas.second[w+1]; ++i)
     836                 :            : //!          use edge id edpas.first[i]
     837                 :            : //!   \endcode
     838                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
     839                 :            : // *****************************************************************************
     840                 :            : {
     841         [ +  + ]:         18 :   if (inpoed.empty()) return {};
     842                 :            : 
     843                 :            :   Assert( mvecl > 0, "Attempt to call genEdpas() with non-positive veclen" );
     844                 :            :   Assert( nnpe > 0, "Attempt to call genEdpas() with non-positive nnpe" );
     845                 :            :   Assert( npoin > 0, "Attempt to call genEdpas() with non-positive npoin" );
     846                 :            :   Assert( inpoed.size()%nnpe == 0, "Size of inpoed must be divisible by nnpe" );
     847                 :            : 
     848                 :         16 :   auto nedge = inpoed.size() / nnpe;
     849                 :            : 
     850                 :         16 :   std::vector< std::size_t > ledge( nedge, 0 );
     851 [ +  - ][ +  - ]:         16 :   std::vector< std::size_t > lpoin( npoin, 0 );
                 [ -  - ]
     852                 :            : 
     853                 :            :   std::pair< std::vector< std::size_t >, std::vector< std::size_t > > edpas;
     854         [ +  - ]:         16 :   edpas.first.resize( nedge+1, 0 );
     855 [ +  - ][ +  - ]:         16 :   edpas.second.push_back( 0 );
     856                 :            : 
     857                 :         16 :   std::unordered_set< std::size_t > unedge( nedge );
     858         [ +  + ]:        288 :   for (std::size_t e=0; e<nedge; ++e) unedge.insert( e );
     859                 :            : 
     860                 :            :   std::size_t nenew = 0, ngrou = 0;
     861                 :            : 
     862         [ +  + ]:         98 :   while (nenew < nedge) {
     863                 :            :     int nvecl = 0;
     864                 :         82 :     ++ngrou;
     865         [ +  - ]:         82 :     edpas.second.emplace_back();
     866         [ +  + ]:        910 :     for (auto ie = begin(unedge); ie != end(unedge); ) {
     867                 :        852 :       auto e = *ie;
     868                 :        852 :       const auto N = inpoed.data() + e*nnpe;
     869                 :            :       std::size_t nsw = 0;
     870         [ +  + ]:       1904 :       for (std::size_t i=0; i<nnpe; ++i) {
     871         [ +  + ]:       1632 :         if (lpoin[N[i]] == ngrou) break; else ++nsw;
     872                 :            :       }
     873         [ +  + ]:        852 :       if (nsw == nnpe) {
     874         [ +  + ]:        868 :         for (std::size_t i=0; i<nnpe; ++i) lpoin[N[i]] = ngrou;
     875                 :        272 :         ledge[e] = ngrou;
     876                 :        272 :         ++nenew;
     877                 :        272 :         ++nvecl;
     878                 :        272 :         edpas.first[nenew] = e;
     879                 :        272 :         edpas.second[ngrou] = nenew;
     880                 :            :         ie = unedge.erase( ie );
     881                 :            :       } else {
     882                 :            :         ++ie;
     883                 :            :       }
     884         [ +  + ]:        852 :       if (nvecl == mvecl) break;
     885                 :            :     }
     886                 :            :   }
     887                 :            : 
     888                 :            :   //std::size_t ne = 0;
     889                 :            :   //for (std::size_t i=0; i<edpas.second.size()-1; ++i) {
     890                 :            :   //  std::cout << i+1 << ": " << edpas.second[i+1] - edpas.second[i] << '\n';
     891                 :            :   //  ne += edpas.second[i+1] - edpas.second[i];
     892                 :            :   //}
     893                 :            :   //std::cout << "edges grouped: " << ne << " of " << nedge << '\n';
     894                 :            :   //std::cout << "edge groups:";
     895                 :            :   //for (std::size_t g=1; g<=edpas.second.size(); ++g) {
     896                 :            :   //  std::cout << '\n';
     897                 :            :   //  for (std::size_t e=0; e<nedge; ++e) {
     898                 :            :   //    if (ledge[e] == g) {
     899                 :            :   //      const auto N = inpoed.data() + e*nnpe;
     900                 :            :   //      std::cout << e << ":\t";
     901                 :            :   //      for (std::size_t i=0; i<nnpe-1; ++i) std::cout << N[i] << '-';
     902                 :            :   //      std::cout << N[nnpe-1] << "\tgrp: " << ledge[e] << '\n';
     903                 :            :   //    }
     904                 :            :   //  }
     905                 :            :   //}
     906                 :            :   //std::cout << '\n';
     907                 :            : 
     908                 :            :   //std::cout << "\nnew access loop:\n";
     909                 :            :   //for (std::size_t g=0; g<edpas.second.size()-1; ++g) {
     910                 :            :   //  //#pragma omp simd
     911                 :            :   //  for (auto w=edpas.second[g]+1; w<=edpas.second[g+1]; ++w) {
     912                 :            :   //    auto e = edpas.first[w];
     913                 :            :   //    const auto N = inpoed.data() + e*nnpe;
     914                 :            :   //    for (std::size_t i=0; i<nnpe-1; ++i) std::cout << N[i] << '-';
     915                 :            :   //    std::cout << N[nnpe-1] << ' ';
     916                 :            :   //  }
     917                 :            :   //  std::cout << '\n';
     918                 :            :   //}
     919                 :            :   //std::cout << '\n';
     920                 :            : 
     921                 :            :   //std::cout << "old access loop:\n";
     922                 :            :   //for (std::size_t e=0; e<nedge; ++e) {
     923                 :            :   //  const auto N = inpoed.data() + e*nnpe;
     924                 :            :   //  for (std::size_t i=0; i<nnpe-1; ++i) std::cout << N[i] << '-';
     925                 :            :   //  std::cout << N[nnpe-1] << ' ';
     926                 :            :   //}
     927                 :            :   //std::cout << "\n\n";
     928                 :            : 
     929                 :            :   // Return linked lists
     930                 :            :   return edpas;
     931                 :         16 : }
     932                 :            : 
     933                 :            : std::size_t
     934                 :          2 : genNbfacTet( std::size_t tnbfac,
     935                 :            :              const std::vector< std::size_t >& inpoel,
     936                 :            :              const std::vector< std::size_t >& triinpoel_complete,
     937                 :            :              const std::map< int, std::vector< std::size_t > >& bface_complete,
     938                 :            :              const std::unordered_map< std::size_t, std::size_t >& lid,
     939                 :            :              std::vector< std::size_t >& triinpoel,
     940                 :            :              std::map< int, std::vector< std::size_t > >& bface )
     941                 :            : // *****************************************************************************
     942                 :            : //  Generate number of boundary-faces and triangle boundary-face connectivity
     943                 :            : //! \param[in] tnbfac Total number of boundary faces in the entire mesh.
     944                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
     945                 :            : //!   node ids of each element of an unstructured mesh.
     946                 :            : //! \param[in] triinpoel_complete Interconnectivity of points and boundary-face
     947                 :            : //!   in the entire mesh.
     948                 :            : //! \param[in] bface_complete Map of boundary-face lists mapped to corresponding 
     949                 :            : //!   side set ids for the entire mesh.
     950                 :            : //! \param[in] lid Mapping between the node indices used in the smaller inpoel
     951                 :            : //!   connectivity (a subset of the entire triinpoel_complete connectivity),
     952                 :            : //!   e.g., after mesh partitioning.
     953                 :            : //! \param[inout] triinpoel Interconnectivity of points and boundary-face in
     954                 :            : //!   this mesh-partition.
     955                 :            : //! \param[inout] bface Map of boundary-face lists mapped to corresponding 
     956                 :            : //!   side set ids for this mesh-partition
     957                 :            : //! \return Number of boundary-faces on this chare/mesh-partition.
     958                 :            : //! \details This function takes a mesh by its domain-element
     959                 :            : //!   (tetrahedron-connectivity) in inpoel and a boundary-face (triangle)
     960                 :            : //!   connectivity in triinpoel_complete. Based on these two arrays, it
     961                 :            : //!   searches for those faces of triinpoel_complete that are also in inpoel
     962                 :            : //!   and as a result it generates (1) the number of boundary faces shared with
     963                 :            : //!   the mesh in inpoel and (2) the intersection of the triangle element
     964                 :            : //!   connectivity whose faces are shared with inpoel. An example use case is
     965                 :            : //!   where triinpoel_complete contains the connectivity for the boundary of the
     966                 :            : //!   full problem/mesh and inpoel contains the connectivity for only a chunk of
     967                 :            : //!   an already partitioned mesh. This function then intersects
     968                 :            : //!   triinpoel_complete with inpoel and returns only those faces that share
     969                 :            : //!   nodes with inpoel.
     970                 :            : //! \warning This is for Triangular face-elements only.
     971                 :            : // *****************************************************************************
     972                 :            : {
     973                 :            :   // cppcheck-suppress unreadVariable
     974                 :          2 :   std::size_t nbfac = 0, nnpf = 3;
     975                 :            : 
     976         [ +  - ]:          2 :   if (tnbfac > 0)
     977                 :            :   {
     978                 :            : 
     979                 :            :   Assert( !inpoel.empty(),
     980                 :            :           "Attempt to call genNbfacTet() on empty inpoel container" );
     981                 :            :   Assert( !triinpoel_complete.empty(),
     982                 :            :           "Attempt to call genNbfacTet() on empty triinpoel_complete container" );
     983                 :            :   Assert( triinpoel_complete.size()/nnpf == tnbfac, 
     984                 :            :           "Incorrect size of triinpoel in genNbfacTet()" );
     985                 :            : 
     986                 :          2 :   auto nptet = inpoel;
     987         [ +  - ]:          2 :   auto nptri = triinpoel_complete;
     988                 :            : 
     989         [ +  - ]:          2 :   unique( nptet );
     990         [ +  - ]:          2 :   unique( nptri );
     991                 :            : 
     992                 :            :   std::unordered_set< std::size_t > snptet;
     993                 :            : 
     994                 :            :   // getting the reduced inpoel as a set for quick searches
     995                 :            :   snptet.insert( begin(nptet), end(nptet));
     996                 :            : 
     997                 :            :   // vector to store boundary-face-nodes in this chunk
     998                 :            :   std::vector< std::size_t > nptri_chunk;
     999                 :            : 
    1000                 :            :   // getting the nodes of the boundary-faces in this chunk
    1001 [ +  - ][ +  + ]:         30 :   for (auto i : nptri)
    1002         [ +  - ]:         28 :     if (snptet.find(i) != end(snptet))
    1003         [ +  - ]:         28 :       nptri_chunk.push_back(i);
    1004                 :            : 
    1005                 :            :   std::size_t tag, icoun;
    1006                 :            : 
    1007                 :            :   // matching nodes in nptri_chunk with nodes in inpoel and 
    1008                 :            :   // triinpoel_complete to get the number of faces in this chunk
    1009         [ +  + ]:          4 :   for (const auto& ss : bface_complete)
    1010                 :            :   {
    1011         [ +  + ]:         50 :     for (auto f : ss.second)
    1012                 :            :     {
    1013                 :         48 :       icoun = f*nnpf;
    1014                 :            :       tag = 0;
    1015         [ +  + ]:        192 :       for (std::size_t i=0; i<nnpf; ++i) {
    1016         [ +  + ]:       2160 :         for (auto j : nptri_chunk) {
    1017                 :            :           // cppcheck-suppress useStlAlgorithm
    1018         [ +  + ]:       2016 :           if (triinpoel_complete[icoun+i] == j) ++tag;
    1019                 :            :         }
    1020                 :            :       }
    1021         [ +  - ]:         48 :       if (tag == nnpf)
    1022                 :            :       // this is a boundary face
    1023                 :            :       {
    1024         [ +  + ]:        192 :         for (std::size_t i=0; i<nnpf; ++i)
    1025                 :            :         {
    1026         [ +  - ]:        144 :           auto ip = triinpoel_complete[icoun+i];
    1027                 :            : 
    1028                 :            :           // find local renumbered node-id to store in triinpoel
    1029         [ +  - ]:        144 :           triinpoel.push_back( cref_find(lid,ip) );
    1030                 :            :         }
    1031                 :            : 
    1032 [ +  - ][ +  - ]:         48 :         bface[ss.first].push_back(nbfac);
    1033                 :         48 :         ++nbfac;
    1034                 :            :       }
    1035                 :            :     }
    1036                 :            :   }
    1037                 :            : 
    1038                 :            :   }
    1039                 :            : 
    1040                 :          2 :   return nbfac;
    1041                 :            : }
    1042                 :            : 
    1043                 :            : std::vector< int >
    1044                 :       2614 : genEsuelTet( const std::vector< std::size_t >& inpoel,
    1045                 :            :              const std::pair< std::vector< std::size_t >,
    1046                 :            :                               std::vector< std::size_t > >& esup )
    1047                 :            : // *****************************************************************************
    1048                 :            : //  Generate derived data structure, elements surrounding elements
    1049                 :            : //  as a fixed length data structure as a full vector, including
    1050                 :            : //  boundary elements as -1.
    1051                 :            : //  \warning This is for Tetrahedra only.
    1052                 :            : //! \param[in] inpoel Inteconnectivity of points and elements. These are the
    1053                 :            : //!   node ids of each element of an unstructured mesh. Example:
    1054                 :            : //!   \code{.cpp}
    1055                 :            : //!     std::vector< std::size_t > inpoel { 12, 14,  9, 11,
    1056                 :            : //!                                         10, 14, 13, 12 };
    1057                 :            : //!   \endcode
    1058                 :            : //!   specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
    1059                 :            : //!   and { 10, 14, 13, 12 }.
    1060                 :            : //! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
    1061                 :            : //! \return Vector storing elements surrounding elements
    1062                 :            : //! \warning It is not okay to call this function with an empty container for
    1063                 :            : //!   inpoel or esup.first or esup.second; it will throw an exception.
    1064                 :            : //! \details The data generated here is stored in a single vector, with length
    1065                 :            : //!   nfpe * nelem. Note however, that nelem is not explicitly provided, but
    1066                 :            : //!   calculated from inpoel. For boundary elements, at the boundary face, this
    1067                 :            : //!   esuelTet stores value -1 indicating that this is outside the domain. The
    1068                 :            : //!   convention for numbering the local face (triangle) connectivity is very
    1069                 :            : //!   important, e.g., in generating the inpofa array later. This node ordering
    1070                 :            : //!   convention is stored in tk::lpofa. Thus function is specific to
    1071                 :            : //!   tetrahedra, which is reflected in the fact that nnpe and nfpe are being
    1072                 :            : //!   set here in the function rather than being input arguments. To find out
    1073                 :            : //!   the number of elements, _nelem_, the size of the mesh connectivity vector,
    1074                 :            : //!   _inpoel_, can be devided by the number of nodes per elements, _nnpe_:
    1075                 :            : //!   \code{.cpp}
    1076                 :            : //!     auto nelem = inpoel.size()/nnpe;
    1077                 :            : //!   \endcode
    1078                 :            : // *****************************************************************************
    1079                 :            : {
    1080                 :            :   Assert( !inpoel.empty(), "Attempt to call genEsuelTet() on empty container" );
    1081                 :            :   Assert( !esup.first.empty(), "Attempt to call genEsuelTet() with empty esup1" );
    1082                 :            :   Assert( !esup.second.empty(),
    1083                 :            :           "Attempt to call genEsuelTet() with empty esup2" );
    1084                 :            : 
    1085                 :            :   auto& esup1 = esup.first;
    1086                 :            :   auto& esup2 = esup.second;
    1087                 :            : 
    1088                 :            :   // set tetrahedron geometry
    1089                 :            :   // cppcheck-suppress unreadVariable
    1090                 :            :   std::size_t nnpe = 4, nfpe = 4, nnpf = 3;
    1091                 :            : 
    1092                 :            :   Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by four" );
    1093                 :            : 
    1094                 :            :   // get nelem and npoin
    1095                 :            :   // cppcheck-suppress unreadVariable
    1096                 :       2614 :   auto nelem = inpoel.size()/nnpe;
    1097                 :       2614 :   auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
    1098                 :            :   Assert( *minmax.first == 0, "node ids should start from zero" );
    1099                 :       2614 :   auto npoin = *minmax.second + 1;
    1100                 :            : 
    1101                 :       2614 :   std::vector< int > esuelTet(nfpe*nelem, -1);
    1102 [ +  - ][ -  - ]:       2614 :   std::vector< std::size_t > lhelp(nnpf,0),
    1103 [ +  - ][ -  - ]:       2614 :                              lpoin(npoin,0);
    1104                 :            : 
    1105         [ +  + ]:    1600486 :   for (std::size_t e=0; e<nelem; ++e)
    1106                 :            :   {
    1107                 :    1597872 :     auto mark = nnpe*e;
    1108         [ +  + ]:    7989360 :     for (std::size_t fe=0; fe<nfpe; ++fe)
    1109                 :            :     {
    1110                 :            :       // array which stores points on this face
    1111                 :    6391488 :       lhelp[0] = inpoel[mark+lpofa[fe][0]];
    1112                 :    6391488 :       lhelp[1] = inpoel[mark+lpofa[fe][1]];
    1113                 :    6391488 :       lhelp[2] = inpoel[mark+lpofa[fe][2]];
    1114                 :            : 
    1115                 :            :       // mark in this array
    1116                 :    6391488 :       lpoin[lhelp[0]] = 1;
    1117                 :    6391488 :       lpoin[lhelp[1]] = 1;
    1118                 :    6391488 :       lpoin[lhelp[2]] = 1;
    1119                 :            : 
    1120                 :            :       // select a point on this face
    1121                 :    6391488 :       auto ipoin = lhelp[0];
    1122                 :            : 
    1123                 :            :       // loop over elements around this point
    1124         [ +  + ]:  134768850 :       for (std::size_t j=esup2[ipoin]+1; j<=esup2[ipoin+1]; ++j )
    1125                 :            :       {
    1126                 :  128377362 :         auto jelem = esup1[j];
    1127                 :            :         // if this jelem is not e itself then proceed
    1128         [ +  + ]:  128377362 :         if (jelem != e)
    1129                 :            :         {
    1130         [ +  + ]:  609929370 :           for (std::size_t fj=0; fj<nfpe; ++fj)
    1131                 :            :           {
    1132                 :            :             std::size_t icoun(0);
    1133         [ +  + ]: 1951773984 :             for (std::size_t jnofa=0; jnofa<nnpf; ++jnofa)
    1134                 :            :             {
    1135         [ +  + ]: 1463830488 :               auto markj = jelem*nnpe;
    1136         [ +  + ]: 1463830488 :               auto jpoin = inpoel[markj+lpofa[fj][jnofa]];
    1137         [ +  + ]: 1463830488 :               if (lpoin[jpoin] == 1) { ++icoun; }
    1138                 :            :             }
    1139                 :            :             //store esuel if
    1140         [ +  + ]:  487943496 :             if (icoun == nnpf)
    1141                 :            :             {
    1142                 :            :               auto markf = nfpe*e;
    1143                 :    5922756 :               esuelTet[markf+fe] = static_cast<int>(jelem);
    1144                 :            : 
    1145                 :    5922756 :               markf = nfpe*jelem;
    1146                 :    5922756 :               esuelTet[markf+fj] = static_cast<int>(e);
    1147                 :            :             }
    1148                 :            :           }
    1149                 :            :         }
    1150                 :            :       }
    1151                 :            :       // reset this array
    1152                 :    6391488 :       lpoin[lhelp[0]] = 0;
    1153                 :    6391488 :       lpoin[lhelp[1]] = 0;
    1154                 :    6391488 :       lpoin[lhelp[2]] = 0;
    1155                 :            :     }
    1156                 :            :   }
    1157                 :            : 
    1158                 :       2614 :   return esuelTet;
    1159                 :            : }
    1160                 :            : 
    1161                 :            : std::size_t
    1162                 :          8 : genNipfac( std::size_t nfpe,
    1163                 :            :            std::size_t nbfac,
    1164                 :            :            const std::vector< int >& esuelTet )
    1165                 :            : // *****************************************************************************
    1166                 :            : //  Generate number of internal and physical-boundary faces
    1167                 :            : //! \param[in] nfpe Number of faces per element.
    1168                 :            : //! \param[in] nbfac Number of boundary faces.
    1169                 :            : //! \param[in] esuelTet Elements surrounding elements.
    1170                 :            : //! \return Total number of faces in the mesh
    1171                 :            : //! \details The unsigned integer here gives the number of internal and
    1172                 :            : //!    physical-boundary faces in the mesh. The data structure does not include
    1173                 :            : //!    faces that are on partition/chare-boundaries.
    1174                 :            : // *****************************************************************************
    1175                 :            : {
    1176                 :            :   Assert( !esuelTet.empty(), "Attempt to call genNipfac() with empty esuelTet" );
    1177                 :            :   Assert( esuelTet.size()%nfpe == 0,
    1178                 :            :                   "Size of esuelTet must be divisible by nfpe" );
    1179                 :            :   Assert( nfpe > 0, "Attempt to call genNipfac() with zero faces per element" );
    1180                 :            : 
    1181                 :          8 :   auto nelem = esuelTet.size()/nfpe;
    1182                 :            : 
    1183                 :            :   std::size_t nifac = 0;
    1184                 :            : 
    1185                 :            :   // loop through elements surrounding elements to find number of internal faces
    1186         [ +  + ]:        396 :   for (std::size_t e=0; e<nelem; ++e)
    1187                 :            :   {
    1188         [ +  + ]:       1940 :     for (std::size_t ip=nfpe*e; ip<nfpe*(e+1); ++ip)
    1189                 :            :     {
    1190         [ +  + ]:       1552 :       if (esuelTet[ip] != -1)
    1191                 :            :       {
    1192         [ +  + ]:       1264 :         if ( e<static_cast< std::size_t >(esuelTet[ip]) )
    1193                 :            :         {
    1194                 :        632 :           ++nifac;
    1195                 :            :         }
    1196                 :            :       }
    1197                 :            :     }
    1198                 :            :   }
    1199                 :            : 
    1200                 :          8 :   return nifac + nbfac;
    1201                 :            : }
    1202                 :            : 
    1203                 :            : std::vector< int >
    1204                 :          2 : genEsuf( std::size_t nfpe,
    1205                 :            :          std::size_t nipfac,
    1206                 :            :          std::size_t nbfac,
    1207                 :            :          const std::vector< std::size_t >& belem,
    1208                 :            :          const std::vector< int >& esuelTet )
    1209                 :            : // *****************************************************************************
    1210                 :            : //  Generate derived data structure, elements surrounding faces
    1211                 :            : //! \param[in] nfpe  Number of faces per element.
    1212                 :            : //! \param[in] nipfac Number of internal and physical-boundary faces.
    1213                 :            : //! \param[in] nbfac Number of boundary faces.
    1214                 :            : //! \param[in] belem Boundary element vector.
    1215                 :            : //! \param[in] esuelTet Elements surrounding elements.
    1216                 :            : //! \return Elements surrounding faces.
    1217                 :            : //! \details The unsigned integer vector gives the IDs of the elements to the
    1218                 :            : //    left and the right of each face in the mesh. The convention followed 
    1219                 :            : //    throughout is : The left element always has an ID smaller than the ID of
    1220                 :            : //    the right element.
    1221                 :            : // *****************************************************************************
    1222                 :            : {
    1223                 :            :   Assert( esuelTet.size()%nfpe == 0, 
    1224                 :            :                   "Size of esuelTet must be divisible by nfpe" );
    1225                 :            :   Assert( nfpe > 0, "Attempt to call genEsuf() with zero faces per element" );
    1226                 :            : 
    1227                 :          2 :   auto nelem = esuelTet.size()/nfpe;
    1228                 :            : 
    1229                 :          2 :   std::vector< int > esuf(2*nipfac);
    1230                 :            : 
    1231                 :            :   // counters for number of internal and boundary faces
    1232                 :          2 :   std::size_t icoun(2*nbfac), bcoun(0);
    1233                 :            : 
    1234                 :            :   // loop to get face-element connectivity for internal faces
    1235         [ +  + ]:        148 :   for (std::size_t e=0; e<nelem; ++e) {
    1236         [ +  + ]:        730 :     for (std::size_t ip=nfpe*e; ip<nfpe*(e+1); ++ip) {
    1237                 :        584 :       auto jelem = esuelTet[ip];
    1238         [ +  + ]:        584 :       if (jelem != -1)
    1239                 :            :       {
    1240         [ +  + ]:        488 :         if ( e < static_cast< std::size_t >(jelem) )
    1241                 :            :         {
    1242                 :        244 :           esuf[icoun] = static_cast< int >(e);
    1243                 :        244 :           esuf[icoun+1] = static_cast< int >(jelem);
    1244                 :        244 :           icoun = icoun + 2;
    1245                 :            :         }
    1246                 :            :       }
    1247                 :            :     }
    1248                 :            :   }
    1249                 :            : 
    1250                 :            :   // loop to get face-element connectivity for physical-boundary faces
    1251                 :            :   bcoun = 0;
    1252         [ +  + ]:         98 :   for (auto ie : belem) {
    1253                 :         96 :     esuf[bcoun] = static_cast< int >(ie);
    1254                 :         96 :     esuf[bcoun+1] = -1;  // outside domain
    1255                 :         96 :     bcoun = bcoun + 2;
    1256                 :            :   }
    1257                 :            : 
    1258                 :          2 :   return esuf;
    1259                 :            : }
    1260                 :            : 
    1261                 :            : std::vector< std::size_t >
    1262         [ +  - ]:          6 : genInpofaTet( std::size_t nipfac,
    1263                 :            :               std::size_t nbfac,
    1264                 :            :               const std::vector< std::size_t >& inpoel,
    1265                 :            :               const std::vector< std::size_t >& triinpoel,
    1266                 :            :               const std::vector< int >& esuelTet )
    1267                 :            : // *****************************************************************************
    1268                 :            : //  Generate derived data structure, points on faces for tetrahedra only
    1269                 :            : //! \param[in] nipfac Number of internal and physical-boundary faces.
    1270                 :            : //! \param[in] nbfac Number of boundary faces.
    1271                 :            : //! \param[in] inpoel Element-node connectivity.
    1272                 :            : //! \param[in] triinpoel Face-node connectivity.
    1273                 :            : //! \param[in] esuelTet Elements surrounding elements.
    1274                 :            : //! \return Points surrounding faces. The unsigned integer vector gives the
    1275                 :            : //!   elements to the left and to the right of each face in the mesh.
    1276                 :            : // *****************************************************************************
    1277                 :            : {
    1278                 :            :   std::vector< std::size_t > inpofa;
    1279                 :            : 
    1280                 :            :   // set tetrahedron geometry
    1281                 :            :   // cppcheck-suppress unreadVariable
    1282                 :            :   std::size_t nnpe(4), nfpe(4), nnpf(3);
    1283                 :            : 
    1284                 :            :   Assert( esuelTet.size()%nfpe == 0,
    1285                 :            :                   "Size of esuelTet must be divisible by nfpe" );
    1286                 :            :   Assert( inpoel.size()%nnpe == 0,
    1287                 :            :                   "Size of inpoel must be divisible by nnpe" );
    1288                 :            : 
    1289         [ +  - ]:          6 :   inpofa.resize(nnpf*nipfac);
    1290                 :            : 
    1291                 :            :   // counters for number of internal and boundary faces
    1292                 :          6 :   std::size_t icoun(nnpf*nbfac);
    1293                 :            : 
    1294                 :            :   // loop over elems to get nodes on faces
    1295                 :            :   // this fills the interior face-node connectivity part
    1296         [ +  + ]:        248 :   for (std::size_t e=0; e<inpoel.size()/nnpe; ++e)
    1297                 :            :   {
    1298                 :        242 :     auto mark = nnpe*e;
    1299         [ +  + ]:       1210 :     for (std::size_t f=0; f<nfpe ; ++f)
    1300                 :            :     {
    1301         [ +  + ]:        968 :       auto ip = nfpe*e + f;
    1302                 :        968 :       auto jelem = esuelTet[ip];
    1303         [ +  + ]:        968 :       if (jelem != -1)
    1304                 :            :       {
    1305         [ +  + ]:        776 :         if ( e < static_cast< std::size_t >(jelem) )
    1306                 :            :         {
    1307                 :        388 :           inpofa[icoun]   = inpoel[mark+lpofa[f][0]];
    1308                 :        388 :           inpofa[icoun+1] = inpoel[mark+lpofa[f][1]];
    1309                 :        388 :           inpofa[icoun+2] = inpoel[mark+lpofa[f][2]];
    1310                 :        388 :           icoun = icoun + nnpf;
    1311                 :            :         }
    1312                 :            :       }
    1313                 :            :     }
    1314                 :            :   }
    1315                 :            : 
    1316                 :            :   // this fills the boundary face-node connectivity part
    1317                 :            :   // consistent with triinpoel
    1318         [ +  + ]:        198 :   for (std::size_t f=0; f<nbfac; ++f)
    1319                 :            :   {
    1320                 :        192 :     icoun = nnpf * f;
    1321                 :        192 :     inpofa[icoun+0] = triinpoel[icoun+0];
    1322                 :        192 :     inpofa[icoun+1] = triinpoel[icoun+1];
    1323                 :        192 :     inpofa[icoun+2] = triinpoel[icoun+2];
    1324                 :            :   }
    1325                 :            : 
    1326                 :          6 :   return inpofa;
    1327                 :            : }
    1328                 :            :         
    1329                 :            : std::vector< std::size_t >
    1330                 :          4 : genBelemTet( std::size_t nbfac,
    1331                 :            :               const std::vector< std::size_t >& inpofa,
    1332                 :            :               const std::pair< std::vector< std::size_t >,
    1333                 :            :                                std::vector< std::size_t > >& esup )
    1334                 :            : // *****************************************************************************
    1335                 :            : //  Generate derived data, boundary elements
    1336                 :            : //! \param[in] nbfac Number of boundary faces.
    1337                 :            : //! \param[in] inpofa Face-node connectivity.
    1338                 :            : //! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
    1339                 :            : //! \return Host elements or boundary elements. The unsigned integer vector
    1340                 :            : //!   gives the elements to the left of each boundary face in the mesh.
    1341                 :            : //! \details The data structure generated here contains an array of elements
    1342                 :            : //!   which share one or more of their faces with the physical boundary, i.e.,
    1343                 :            : //!   where exodus specifies a side-set for faces. Such elements are sometimes
    1344                 :            : //!   also called host or boundary elements.
    1345                 :            : // *****************************************************************************
    1346                 :            : {
    1347                 :          4 :   std::vector< std::size_t > belem(nbfac);
    1348                 :            : 
    1349         [ +  - ]:          4 :   if (nbfac > 0)
    1350                 :            :   {
    1351                 :            : 
    1352                 :            :   // set tetrahedron geometry
    1353                 :            :   // cppcheck-suppress unreadVariable
    1354                 :            :   std::size_t nnpf = 3, tag = 0;
    1355                 :            : 
    1356                 :            :   // loop over all the boundary faces
    1357         [ +  + ]:        100 :   for(std::size_t f=0; f<nbfac; ++f)
    1358                 :            :   {
    1359                 :         96 :     belem[f] = 0;
    1360                 :            : 
    1361                 :            :     // array storing the element-cluster around face
    1362                 :            :     std::vector< std::size_t > elemcluster;
    1363                 :            : 
    1364                 :            :     // loop over the nodes of this boundary face
    1365         [ +  + ]:        384 :     for(std::size_t lp=0; lp<nnpf; ++lp)
    1366                 :            :     {
    1367                 :        288 :       auto gp = inpofa[nnpf*f + lp];
    1368                 :            : 
    1369                 :            :       Assert( gp < esup.second.size(), "Indexing out of esup2" );
    1370                 :            :       // loop over elements surrounding this node
    1371         [ +  + ]:       2080 :       for (auto i=esup.second[gp]+1; i<=esup.second[gp+1]; ++i)
    1372                 :            :       {
    1373                 :            :         // form element-cluster vector
    1374         [ +  - ]:       1792 :         elemcluster.push_back(esup.first[i]);
    1375                 :            :       }
    1376                 :            :     }
    1377                 :            : 
    1378                 :            :     // loop over element cluster to find repeating elements
    1379         [ +  - ]:        272 :     for(std::size_t i=0; i<elemcluster.size(); ++i)
    1380                 :            :     {
    1381                 :        272 :       auto ge = elemcluster[i];
    1382                 :            :       tag = 1;
    1383         [ +  + ]:       5384 :       for(std::size_t j=0; j<elemcluster.size(); ++j)
    1384                 :            :       {
    1385 [ +  + ][ +  + ]:       5112 :         if ( i != j && elemcluster[j] == ge )
    1386                 :            :         {
    1387                 :        248 :           tag++;
    1388                 :            :         }
    1389                 :            :       }
    1390         [ +  + ]:        272 :       if (tag == nnpf)
    1391                 :            :       {
    1392                 :            :         // this is the required boundary element
    1393                 :         96 :         belem[f] = ge;
    1394                 :         96 :         break;
    1395                 :            :       }
    1396                 :            :     }
    1397                 :            :   }
    1398                 :            :   }
    1399                 :            : 
    1400                 :          4 :   return belem;
    1401                 :            : }
    1402                 :            :         
    1403                 :            : bool
    1404                 :          0 : leakyPartition( const std::vector< int >& esueltet,
    1405                 :            :                 const std::vector< std::size_t >& inpoel,
    1406                 :            :                 const std::array< std::vector< real >, 3 >& coord )
    1407                 :            : // *****************************************************************************
    1408                 :            : // Perform leak-test on mesh (partition)
    1409                 :            : //! \param[in] esueltet Elements surrounding elements for tetrahedra, see
    1410                 :            : //!   tk::genEsueltet()
    1411                 :            : //! \param[in] inpoel Element connectivity
    1412                 :            : //! \param[in] coord Node coordinates
    1413                 :            : //! \details This function computes a surface integral over the boundary of the
    1414                 :            : //!   incoming mesh (partition). A non-zero vector result indicates a leak, e.g.,
    1415                 :            : //!   a hole in the mesh (partition), which indicates an error either in the
    1416                 :            : //    mesh geometry, mesh partitioning, or in the data structures that represent
    1417                 :            : //    faces.
    1418                 :            : //! \return True if partition leaks.
    1419                 :            : // *****************************************************************************
    1420                 :            : {
    1421                 :            :   const auto& x = coord[0];
    1422                 :            :   const auto& y = coord[1];
    1423                 :            :   const auto& z = coord[2];
    1424                 :            : 
    1425                 :            :   // Storage for surface integral over our mesh partition
    1426                 :            :   std::array< real, 3 > s{{ 0.0, 0.0, 0.0}};
    1427                 :            : 
    1428         [ -  - ]:          0 :   for (std::size_t e=0; e<esueltet.size()/4; ++e) {   // for all our tets
    1429                 :          0 :     auto mark = e*4;
    1430         [ -  - ]:          0 :     for (std::size_t f=0; f<4; ++f)     // for all tet faces
    1431         [ -  - ]:          0 :       if (esueltet[mark+f] == -1) {     // if face has no outside-neighbor tet
    1432                 :            :         // 3 local node IDs of face
    1433                 :          0 :         auto A = inpoel[ mark + lpofa[f][0] ];
    1434                 :          0 :         auto B = inpoel[ mark + lpofa[f][1] ];
    1435                 :          0 :         auto C = inpoel[ mark + lpofa[f][2] ];
    1436                 :            :         // Compute face area and normal
    1437                 :            :         real nx, ny, nz;
    1438                 :          0 :         auto a = normal( x[A],x[B],x[C], y[A],y[B],y[C], z[A],z[B],z[C],
    1439                 :            :                          nx, ny, nz );
    1440                 :            :         // Sum up face area * face unit-normal
    1441                 :          0 :         s[0] += a * nx;
    1442                 :          0 :         s[1] += a * ny;
    1443                 :          0 :         s[2] += a * nz;
    1444                 :            :       }
    1445                 :            :   }
    1446                 :            : 
    1447                 :            :   auto eps = 1.0e-9;
    1448 [ -  - ][ -  - ]:          0 :   return std::abs(s[0]) > eps || std::abs(s[1]) > eps || std::abs(s[2]) > eps;
                 [ -  - ]
    1449                 :            : }
    1450                 :            : 
    1451                 :            : bool
    1452                 :         14 : conforming( const std::vector< std::size_t >& inpoel,
    1453                 :            :             const std::array< std::vector< real >, 3 >& coord,
    1454                 :            :             bool cerr,
    1455                 :            :             const std::vector< std::size_t >& rid )
    1456                 :            : // *****************************************************************************
    1457                 :            : // Check if mesh (partition) is conforming
    1458                 :            : //! \param[in] inpoel Element connectivity
    1459                 :            : //! \param[in] coord Node coordinates
    1460                 :            : //! \param[in] cerr True if hanging-node edge data should be output to
    1461                 :            : //!   std::cerr (true by default)
    1462                 :            : //! \param[in] rid AMR Lib node id map
    1463                 :            : //!   std::cerr (true by default)
    1464                 :            : //! \return True if mesh (partition) has no hanging nodes and thus the mesh is
    1465                 :            : //!   conforming, false if non-conforming.
    1466                 :            : //! \details A conforming mesh by definition has no hanging nodes. A node is
    1467                 :            : //!   hanging if an edge of one element coincides with two (or more) edges (of
    1468                 :            : //!   two or more other elements). Thus, testing for conformity relies on
    1469                 :            : //!   checking the coordinates of all vertices: if any vertex coincides with
    1470                 :            : //!   that of a mid-point node of an edge, that is a hanging node. Note that
    1471                 :            : //!   this assumes that hanging nodes can only be at the mid-point of edges.
    1472                 :            : //!   This may happen after a mesh refinement step, due to a problem/bug,
    1473                 :            : //!   within the mesh refinement algorithm given by J. Waltz, Parallel adaptive
    1474                 :            : //!   refinement for unsteady flow calculations on 3D unstructured grids,
    1475                 :            : //!   International Journal for Numerical Methods in Fluids, 46: 37–57, 2004,
    1476                 :            : //!   which always adds/removes vertices at the mid-points of edges of a
    1477                 :            : //!   tetrahedron mesh within a single refinement step. Thus this algorithm is
    1478                 :            : //!   intended for this specific case, i.e., test for conformity after a
    1479                 :            : //!   single refinement step and not after multiple ones or for detecting
    1480                 :            : //!   hanging nodes in an arbitrary mesh.
    1481                 :            : //*****************************************************************************
    1482                 :            : {
    1483                 :            :   Assert( !inpoel.empty(),
    1484                 :            :           "Attempt to call conforming() with empty mesh connectivity" );
    1485                 :            :   Assert( inpoel.size() % 4 == 0,
    1486                 :            :           "Size of inpoel must be divisible by nnpe" );
    1487                 :            :   Assert( *std::min_element( begin(inpoel), end(inpoel) ) == 0,
    1488                 :            :           "Node ids should start from zero" );
    1489                 :            :   Assert( !coord[0].empty() && !coord[1].empty() && !coord[2].empty(),
    1490                 :            :           "Attempt to call conforming() with empty coordinates container" );
    1491                 :            : 
    1492                 :            :   using Coord = UnsMesh::Coord;
    1493                 :            :   using Edge = UnsMesh::Edge;
    1494                 :            :   using Tet = UnsMesh::Tet;
    1495                 :            : 
    1496                 :            :   // Compare operator to be used as less-than for std::array< real, 3 >,
    1497                 :            :   // implemented as a lexicographic ordering.
    1498                 :         14 :   struct CoordLess {
    1499                 :            :     const real eps = std::numeric_limits< real >::epsilon();
    1500                 :      10870 :     bool operator() ( const Coord& lhs, const Coord& rhs ) const {
    1501         [ +  + ]:      10870 :       if (lhs[0] < rhs[0])
    1502                 :            :         return true;
    1503 [ +  + ][ +  + ]:       8630 :       else if (std::abs(lhs[0]-rhs[0]) < eps && lhs[1] < rhs[1])
    1504                 :            :         return true;
    1505         [ +  + ]:       5010 :       else if (std::abs(lhs[0]-rhs[0]) < eps &&
    1506 [ +  + ][ +  + ]:       6460 :                std::abs(lhs[1]-rhs[1]) < eps &&
    1507         [ +  + ]:       3754 :                lhs[2] < rhs[2])
    1508                 :       1186 :         return true;
    1509                 :            :       else
    1510                 :            :         return false;
    1511                 :            :     }
    1512                 :            :   };
    1513                 :            : 
    1514                 :            :   // Map associating data on potential hanging nodes. Key: coordinates of nodes
    1515                 :            :   // of edge-half points, value: tet id (local if in parallel), tet connectivity
    1516                 :            :   // (using local ids if in parallel), edge ids (local if in parallel).
    1517                 :            :   std::map< Coord,                      // edge-half node coordinates: x, y, z
    1518                 :            :             std::tuple< std::size_t,    // element id of edge-half node
    1519                 :            :                         Tet,            // element node ids of edge-half node
    1520                 :            :                         Edge >,         // edge containing half-node
    1521                 :            :             CoordLess > edgeNodes;
    1522                 :            : 
    1523                 :            :   const auto& x = coord[0];
    1524                 :            :   const auto& y = coord[1];
    1525                 :            :   const auto& z = coord[2];
    1526                 :            : 
    1527                 :            :   fenv_t fe;
    1528                 :         14 :   feholdexcept( &fe );
    1529                 :            : 
    1530                 :            :   // Compute coordinates of nodes of mid-points of all edges
    1531         [ +  + ]:        258 :   for (std::size_t e=0; e<inpoel.size()/4; ++e) {
    1532                 :        244 :     auto A = inpoel[e*4+0];
    1533                 :        244 :     auto B = inpoel[e*4+1];
    1534                 :        244 :     auto C = inpoel[e*4+2];
    1535                 :        244 :     auto D = inpoel[e*4+3];
    1536                 :            :     std::array<Edge,6> edge{{ {{A,B}}, {{B,C}}, {{A,C}},
    1537                 :        244 :                               {{A,D}}, {{B,D}}, {{C,D}} }};
    1538         [ +  + ]:       1708 :     for (const auto& n : edge) {
    1539         [ +  - ]:       1464 :       Coord en{{ (x[n[0]] + x[n[1]]) / 2.0,
    1540                 :       1464 :                  (y[n[0]] + y[n[1]]) / 2.0,
    1541         [ +  - ]:       1464 :                  (z[n[0]] + z[n[1]]) / 2.0 }};
    1542         [ +  - ]:       1464 :       edgeNodes[ en ] = std::tuple<std::size_t,Tet,Edge>{ e, {{A,B,C,D}}, n };
    1543                 :            :     }
    1544                 :            :   }
    1545                 :            : 
    1546                 :         14 :   feclearexcept( FE_UNDERFLOW );
    1547                 :         14 :   feupdateenv( &fe );
    1548                 :            : 
    1549                 :            :   // Find hanging nodes. If the coordinates of an element vertex coincide with
    1550                 :            :   // that of a mid-point node of an edge, that is a hanging node. If we find one
    1551                 :            :   // such node we print out some info on it.
    1552                 :            :   auto ix = x.cbegin();
    1553                 :            :   auto iy = y.cbegin();
    1554                 :            :   auto iz = z.cbegin();
    1555                 :            : 
    1556                 :            :   bool hanging_node = false;
    1557                 :            : 
    1558         [ +  + ]:        188 :   while (ix != x.cend()) {
    1559         [ +  + ]:        174 :     Coord n{{ *ix, *iy, *iz }};
    1560                 :            :     auto i = edgeNodes.find( n );
    1561         [ +  + ]:        174 :     if (i != end(edgeNodes)) {
    1562                 :            :       const auto& hanging_node_coord = i->first;
    1563                 :            :       const auto& hanging_node_info = i->second;
    1564                 :          2 :       auto tet_id = std::get< 0 >( hanging_node_info );
    1565                 :            :       const auto& tet = std::get< 1 >( hanging_node_info );
    1566                 :            :       const auto& edge = std::get< 2 >( hanging_node_info );
    1567         [ -  + ]:          2 :       if (cerr) {
    1568                 :            :         std::cerr
    1569                 :            :           << "Mesh conformity test found hanging node with coordinates"" ("
    1570         [ -  - ]:          0 :           << hanging_node_coord[0] << ", "
    1571         [ -  - ]:          0 :           << hanging_node_coord[1] << ", "
    1572         [ -  - ]:          0 :           << hanging_node_coord[2] << ") of tetrahedron element "
    1573 [ -  - ][ -  - ]:          0 :           << tet_id << " with connectivity (" << tet[0] << ','
    1574 [ -  - ][ -  - ]:          0 :           << tet[1] << ',' << tet[2] << ',' << tet[3] << ") on edge ("
         [ -  - ][ -  - ]
                 [ -  - ]
    1575 [ -  - ][ -  - ]:          0 :           << edge[0] << ',' << edge[1] << ")"
                 [ -  - ]
    1576 [ -  - ][ -  - ]:          0 :           << "AMR lib node ids for this edge: " << rid[edge[0]] << ','
    1577         [ -  - ]:          0 :           << rid[edge[1]] << std::endl;
    1578                 :            :       }
    1579                 :            :       hanging_node = true;
    1580                 :            :     }
    1581                 :            :     ++ix; ++iy; ++iz;
    1582                 :            :   }
    1583                 :            : 
    1584         [ +  + ]:         14 :   if (hanging_node) return false;
    1585                 :            : 
    1586                 :            :   return true;
    1587                 :            : }
    1588                 :            : 
    1589                 :            : bool
    1590                 :     117618 : intet( const std::array< std::vector< real >, 3 >& coord,
    1591                 :            :        const std::vector< std::size_t >& inpoel,
    1592                 :            :        const std::vector< real >& p,
    1593                 :            :        std::size_t e,
    1594                 :            :        std::array< real, 4 >& N )
    1595                 :            : // *****************************************************************************
    1596                 :            : //  Determine if a point is in a tetrahedron
    1597                 :            : //! \param[in] coord Mesh node coordinates
    1598                 :            : //! \param[in] inpoel Mesh element connectivity
    1599                 :            : //! \param[in] p Point coordinates
    1600                 :            : //! \param[in] e Mesh cell index
    1601                 :            : //! \param[in,out] N Shapefunctions evaluated at the point
    1602                 :            : //! \return True if ppoint is in mesh cell
    1603                 :            : //! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
    1604                 :            : // *****************************************************************************
    1605                 :            : {
    1606                 :            :   Assert( p.size() == 3, "Size mismatch" );
    1607                 :            : 
    1608                 :            :   // Tetrahedron node indices
    1609         [ +  + ]:     117618 :   const auto A = inpoel[e*4+0];
    1610                 :     117618 :   const auto B = inpoel[e*4+1];
    1611                 :     117618 :   const auto C = inpoel[e*4+2];
    1612                 :     117618 :   const auto D = inpoel[e*4+3];
    1613                 :            : 
    1614                 :            :   // Tetrahedron node coordinates
    1615                 :            :   const auto& x = coord[0];
    1616                 :            :   const auto& y = coord[1];
    1617                 :            :   const auto& z = coord[2];
    1618                 :            : 
    1619                 :            :   // Point coordinates
    1620                 :            :   const auto& xp = p[0];
    1621                 :            :   const auto& yp = p[1];
    1622                 :            :   const auto& zp = p[2];
    1623                 :            : 
    1624                 :            :   // Evaluate linear shapefunctions at point locations using Cramer's Rule
    1625                 :            :   //    | xp |   | x1 x2 x3 x4 |   | N1 |
    1626                 :            :   //    | yp | = | y1 y2 y3 y4 | • | N2 |
    1627                 :            :   //    | zp |   | z1 z2 z3 z4 |   | N3 |
    1628                 :            :   //    | 1  |   | 1  1  1  1  |   | N4 |
    1629                 :            : 
    1630                 :     117618 :   real DetX = (y[B]*z[C] - y[C]*z[B] - y[B]*z[D] + y[D]*z[B] +
    1631                 :     117618 :     y[C]*z[D] - y[D]*z[C])*x[A] + x[B]*y[C]*z[A] - x[B]*y[A]*z[C] +
    1632                 :     117618 :     x[C]*y[A]*z[B] - x[C]*y[B]*z[A] + x[B]*y[A]*z[D] - x[B]*y[D]*z[A] -
    1633                 :     117618 :     x[D]*y[A]*z[B] + x[D]*y[B]*z[A] - x[C]*y[A]*z[D] + x[C]*y[D]*z[A] +
    1634                 :     117618 :     x[D]*y[A]*z[C] - x[D]*y[C]*z[A] - x[B]*y[C]*z[D] + x[B]*y[D]*z[C] +
    1635                 :     117618 :     x[C]*y[B]*z[D] - x[C]*y[D]*z[B] - x[D]*y[B]*z[C] + x[D]*y[C]*z[B];
    1636                 :            : 
    1637                 :     117618 :   real DetX1 = (y[D]*z[C] - y[C]*z[D] + y[C]*zp - yp*z[C] -
    1638                 :     117618 :     y[D]*zp + yp*z[D])*x[B] + x[C]*y[B]*z[D] - x[C]*y[D]*z[B] -
    1639                 :     117618 :     x[D]*y[B]*z[C] + x[D]*y[C]*z[B] - x[C]*y[B]*zp + x[C]*yp*z[B] +
    1640                 :     117618 :     xp*y[B]*z[C] - xp*y[C]*z[B] + x[D]*y[B]*zp - x[D]*yp*z[B] -
    1641                 :     117618 :     xp*y[B]*z[D] + xp*y[D]*z[B] + x[C]*y[D]*zp - x[C]*yp*z[D] -
    1642                 :     117618 :     x[D]*y[C]*zp + x[D]*yp*z[C] + xp*y[C]*z[D] - xp*y[D]*z[C];
    1643                 :            : 
    1644                 :     117618 :   real DetX2 = (y[C]*z[D] - y[D]*z[C] - y[C]*zp + yp*z[C] +
    1645                 :     117618 :     y[D]*zp - yp*z[D])*x[A] + x[C]*y[D]*z[A] - x[C]*y[A]*z[D] +
    1646                 :     117618 :     x[D]*y[A]*z[C] - x[D]*y[C]*z[A] + x[C]*y[A]*zp - x[C]*yp*z[A] -
    1647                 :     117618 :     xp*y[A]*z[C] + xp*y[C]*z[A] - x[D]*y[A]*zp + x[D]*yp*z[A] +
    1648                 :     117618 :     xp*y[A]*z[D] - xp*y[D]*z[A] - x[C]*y[D]*zp + x[C]*yp*z[D] +
    1649                 :     117618 :     x[D]*y[C]*zp - x[D]*yp*z[C] - xp*y[C]*z[D] + xp*y[D]*z[C];
    1650                 :            : 
    1651                 :     117618 :   real DetX3 = (y[D]*z[B] - y[B]*z[D] + y[B]*zp - yp*z[B] -
    1652                 :     117618 :     y[D]*zp + yp*z[D])*x[A] + x[B]*y[A]*z[D] - x[B]*y[D]*z[A] -
    1653                 :     117618 :     x[D]*y[A]*z[B] + x[D]*y[B]*z[A] - x[B]*y[A]*zp + x[B]*yp*z[A] +
    1654                 :     117618 :     xp*y[A]*z[B] - xp*y[B]*z[A] + x[D]*y[A]*zp - x[D]*yp*z[A] -
    1655                 :     117618 :     xp*y[A]*z[D] + xp*y[D]*z[A] + x[B]*y[D]*zp - x[B]*yp*z[D] -
    1656                 :     117618 :     x[D]*y[B]*zp + x[D]*yp*z[B] + xp*y[B]*z[D] - xp*y[D]*z[B];
    1657                 :            : 
    1658                 :     117618 :   real DetX4 = (y[B]*z[C] - y[C]*z[B] - y[B]*zp + yp*z[B] +
    1659                 :     117618 :     y[C]*zp - yp*z[C])*x[A] + x[B]*y[C]*z[A] - x[B]*y[A]*z[C] +
    1660                 :     117618 :     x[C]*y[A]*z[B] - x[C]*y[B]*z[A] + x[B]*y[A]*zp - x[B]*yp*z[A] -
    1661                 :     117618 :     xp*y[A]*z[B] + xp*y[B]*z[A] - x[C]*y[A]*zp + x[C]*yp*z[A] +
    1662                 :     117618 :     xp*y[A]*z[C] - xp*y[C]*z[A] - x[B]*y[C]*zp + x[B]*yp*z[C] +
    1663                 :     117618 :     x[C]*y[B]*zp - x[C]*yp*z[B] - xp*y[B]*z[C] + xp*y[C]*z[B];
    1664                 :            : 
    1665                 :            :   // Shape functions evaluated at point
    1666                 :     117618 :   N[0] = DetX1/DetX;
    1667                 :     117618 :   N[1] = DetX2/DetX;
    1668                 :     117618 :   N[2] = DetX3/DetX;
    1669                 :     117618 :   N[3] = DetX4/DetX;
    1670                 :            : 
    1671                 :            :   // if min( N^i, 1-N^i ) > 0 for all i, point is in cell
    1672 [ +  + ][ +  + ]:     132399 :   if ( std::min(N[0],1.0-N[0]) > 0 && std::min(N[1],1.0-N[1]) > 0 &&
                 [ +  + ]
    1673 [ +  + ][ +  + ]:     118676 :        std::min(N[2],1.0-N[2]) > 0 && std::min(N[3],1.0-N[3]) > 0 )
         [ +  + ][ -  + ]
                 [ +  + ]
    1674                 :            :   {
    1675                 :         75 :     return true;
    1676                 :            :   } else {
    1677                 :     117543 :     return false;
    1678                 :            :   }
    1679                 :            : }
    1680                 :            : 
    1681                 :            : } // tk::

Generated by: LCOV version 1.16