1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020 | // *****************************************************************************
/*!
\file src/Physics/Lax.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.,
2022-2024 J. Bakosi
All rights reserved. See the LICENSE file for details.
\brief LaxCG: Time-derivative preconditioning for all Ma
\see Luo, Baum, Lohner, "Extension of Harten-Lax-van Leer Scheme for
Flows at All Speeds", AIAA Journal, Vol. 43, No. 6, 2005
\see Weiss & Smith, "Preconditioning Applied to Variable and Constant
Density Time-Accurate Flows on Unstructured Meshes", AIAA Journal,
Vol. 33, No. 11, 1995, pp. 2050-2057.
*/
// *****************************************************************************
#include "Vector.hpp"
#include "Around.hpp"
#include "DerivedData.hpp"
#include "EOS.hpp"
#include "Lax.hpp"
#include "Problems.hpp"
#include "InciterConfig.hpp"
namespace inciter {
extern ctr::Config g_cfg;
} // ::inciter
namespace lax {
static const tk::real muscl_eps = 1.0e-9;
static const tk::real muscl_const = 1.0/3.0;
using inciter::g_cfg;
static void
muscl( std::size_t p,
std::size_t q,
const tk::UnsMesh::Coords& coord,
const tk::Fields& G,
tk::real& pL, tk::real& uL, tk::real& vL, tk::real& wL, tk::real& tL,
tk::real& pR, tk::real& uR, tk::real& vR, tk::real& wR, tk::real& tR )
// *****************************************************************************
//! Compute MUSCL reconstruction in edge-end points for the flow variables
//! \param[in] p Left node id of edge-end
//! \param[in] q Right node id of edge-end
//! \param[in] coord Array of nodal coordinates
//! \param[in] G Gradient of all unknowns in mesh points
//! \param[in,out] pL Left pressure
//! \param[in,out] uL Left X velocity
//! \param[in,out] vL Left Y velocity
//! \param[in,out] wL Left Z velocity
//! \param[in,out] tL Left temperature
//! \param[in,out] pR Right pressure
//! \param[in,out] uR Right X velocity
//! \param[in,out] vR Right Y velocity
//! \param[in,out] wR Right Z velocity
//! \param[in,out] tR Right temperature
// *****************************************************************************
{
// access node coordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// edge vector
tk::real vw[3] = { x[q]-x[p], y[q]-y[p], z[q]-z[p] };<--- Variable 'vw' can be declared as const array
tk::real delta1[5], delta2[5], delta3[5];
tk::real ls[5] = { pL, uL, vL, wL, tL },
rs[5] = { pR, uR, vR, wR, tR },
url[5], urr[5];
memcpy( url, ls, sizeof ls );
memcpy( urr, rs, sizeof rs );
// MUSCL reconstruction of edge-end-point primitive variables
for (std::size_t c=0; c<5; ++c) {
auto g1 = G(p,c*3+0)*vw[0] + G(p,c*3+1)*vw[1] + G(p,c*3+2)*vw[2];
auto g2 = G(q,c*3+0)*vw[0] + G(q,c*3+1)*vw[1] + G(q,c*3+2)*vw[2];
delta2[c] = rs[c] - ls[c];
delta1[c] = 2.0 * g1 - delta2[c];
delta3[c] = 2.0 * g2 - delta2[c];
// MUSCL extrapolation option 1:
// ---------------------------------------------------------------------
// See Waltz, J., Morgan, N. R., Canfield, T. R., Charest, M. R., Risinger,
// L. D., & Wohlbier, J. G. (2014). A three-dimensional finite element
// arbitrary Lagrangian–Eulerian method for shock hydrodynamics on
// unstructured grids. Computers & Fluids, 92, 172-187.
// van Leer limiter
auto rcL = (delta2[c] + muscl_eps) / (delta1[c] + muscl_eps);
auto rcR = (delta2[c] + muscl_eps) / (delta3[c] + muscl_eps);
auto rLinv = (delta1[c] + muscl_eps) / (delta2[c] + muscl_eps);
auto rRinv = (delta3[c] + muscl_eps) / (delta2[c] + muscl_eps);
auto phiL = (std::abs(rcL) + rcL) / (std::abs(rcL) + 1.0);
auto phiR = (std::abs(rcR) + rcR) / (std::abs(rcR) + 1.0);
auto phi_L_inv = (std::abs(rLinv) + rLinv) / (std::abs(rLinv) + 1.0);
auto phi_R_inv = (std::abs(rRinv) + rRinv) / (std::abs(rRinv) + 1.0);
// update unknowns with reconstructed unknowns
url[c] += 0.25*(delta1[c]*(1.0-muscl_const)*phiL +
delta2[c]*(1.0+muscl_const)*phi_L_inv);
urr[c] -= 0.25*(delta3[c]*(1.0-muscl_const)*phiR +
delta2[c]*(1.0+muscl_const)*phi_R_inv);
// MUSCL extrapolation option 2:
// ---------------------------------------------------------------------
// See Luo, H., Baum, J. D., & Lohner, R. (1994). Edge-based finite element
// scheme for the Euler equations. AIAA journal, 32(6), 1183-1190.
// van Leer, B. (1974). Towards the ultimate conservative difference
// scheme. II. Monotonicity and conservation combined in a second-order
// scheme. Journal of computational physics, 14(4), 361-370.
// Derived from the flux limiter phi as: s = phi_inv - (1 - phi)
// van Albada limiter
//auto sL = std::max(0.0, (2.0*delta1[c]*delta2[c] + muscl_eps)
// /(delta1[c]*delta1[c] + delta2[c]*delta2[c] + muscl_eps));
//auto sR = std::max(0.0, (2.0*delta3[c]*delta2[c] + muscl_eps)
// /(delta3[c]*delta3[c] + delta2[c]*delta2[c] + muscl_eps));
//// update unknowns with reconstructed unknowns
//url[c] += 0.25*sL*(delta1[c]*(1.0 - muscl_const*sL)
// + delta2[c]*(1.0 + muscl_const*sL));
//urr[c] -= 0.25*sR*(delta3[c]*(1.0 - muscl_const*sR)
// + delta2[c]*(1.0 + muscl_const*sR));
}
// force first order if the reconstructions for pressure or temperature
// would have allowed negative values
if (ls[0] < delta1[0] || ls[4] < delta1[4]) memcpy( url, ls, sizeof ls );
if (rs[0] < -delta3[0] || rs[4] < -delta3[4]) memcpy( urr, rs, sizeof rs );
pL = url[0];
uL = url[1];
vL = url[2];
wL = url[3];
tL = url[4];
pR = urr[0];
uR = urr[1];
vR = urr[2];
wR = urr[3];
tR = urr[4];
}
static void
muscl( std::size_t p, std::size_t q, const tk::UnsMesh::Coords& coord,
const tk::Fields& G, tk::real uL[], tk::real uR[] )
// *****************************************************************************
//! Compute MUSCL reconstruction in edge-end points for transported scalars
//! \param[in] p Left node id of edge-end
//! \param[in] q Right node id of edge-end
//! \param[in] coord Array of nodal coordinates
//! \param[in] G Gradient of all unknowns in mesh points
//! \param[in,out] uL Primitive variables at left edge-end point
//! \param[in,out] uR Primitive variables at right edge-end point
// *****************************************************************************
{
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wvla"
#pragma clang diagnostic ignored "-Wvla-extension"
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wvla"
#endif
auto ns = G.nprop() / 3 - 5;
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// edge vector
tk::real vw[3] = { x[q]-x[p], y[q]-y[p], z[q]-z[p] };<--- Variable 'vw' can be declared as const array
tk::real delta1[ns], delta2[ns], delta3[ns];
// MUSCL reconstruction of edge-end-point primitive variables
for (std::size_t c=0; c<ns; ++c) {
auto g = (5+c)*3;
auto g1 = G(p,g+0)*vw[0] + G(p,g+1)*vw[1] + G(p,g+2)*vw[2];
auto g2 = G(q,g+0)*vw[0] + G(q,g+1)*vw[1] + G(q,g+2)*vw[2];
delta2[c] = uR[5+c] - uL[5+c];
delta1[c] = 2.0 * g1 - delta2[c];
delta3[c] = 2.0 * g2 - delta2[c];
// van Leer limiter
auto rL = (delta2[c] + muscl_eps) / (delta1[c] + muscl_eps);
auto rR = (delta2[c] + muscl_eps) / (delta3[c] + muscl_eps);
auto rLinv = (delta1[c] + muscl_eps) / (delta2[c] + muscl_eps);
auto rRinv = (delta3[c] + muscl_eps) / (delta2[c] + muscl_eps);
auto phiL = (std::abs(rL) + rL) / (std::abs(rL) + 1.0);
auto phiR = (std::abs(rR) + rR) / (std::abs(rR) + 1.0);
auto phi_L_inv = (std::abs(rLinv) + rLinv) / (std::abs(rLinv) + 1.0);
auto phi_R_inv = (std::abs(rRinv) + rRinv) / (std::abs(rRinv) + 1.0);
// update unknowns with reconstructed unknowns
uL[5+c] += 0.25*(delta1[c]*(1.0-muscl_const)*phiL +
delta2[c]*(1.0+muscl_const)*phi_L_inv);
uR[5+c] -= 0.25*(delta3[c]*(1.0-muscl_const)*phiR +
delta2[c]*(1.0+muscl_const)*phi_R_inv);
}
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic pop
#endif
}
void
grad( const std::array< std::vector< std::size_t >, 3 >& dsupedge,
const std::array< std::vector< tk::real >, 3 >& dsupint,
const std::array< std::vector< tk::real >, 3 >& coord,
const std::vector< std::size_t >& triinpoel,
const tk::Fields& U,
tk::Fields& G )
// *****************************************************************************
// Compute nodal gradients of primitive variables in all points
//! \param[in] dsupedge Domain superedges
//! \param[in] dsupint Domain superedge integrals
//! \param[in] coord Mesh node coordinates
//! \param[in] triinpoel Boundary face connectivity
//! \param[in] U Solution vector of primitive variables at recent time step
//! \param[in,out] G Nodal gradients
//! \return Gradients of primitive variables in all mesh points
// *****************************************************************************
{
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wvla"
#pragma clang diagnostic ignored "-Wvla-extension"
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wvla"
#endif
// cppcheck-suppress unreadVariable
auto ncomp = U.nprop();<--- Unmatched suppression: unreadVariable
Assert( G.nunk() == U.nunk(), "Size mismatch" );
Assert( G.nprop() == ncomp*3, "Size mismatch" );
G.fill( 0.0 );
// domain integral
// domain edge contributions: tetrahedron superedges
for (std::size_t e=0; e<dsupedge[0].size()/4; ++e) {
const auto N = dsupedge[0].data() + e*4;
for (std::size_t c=0; c<ncomp; ++c) {
tk::real u[] = { U(N[0],c), U(N[1],c), U(N[2],c), U(N[3],c) };<--- Variable 'u' can be declared as const array
for (std::size_t j=0; j<3; ++j) {
tk::real f[6];
const auto d = dsupint[0].data();
f[0] = d[(e*6+0)*3+j] * (u[1] + u[0]);
f[1] = d[(e*6+1)*3+j] * (u[2] + u[1]);
f[2] = d[(e*6+2)*3+j] * (u[0] + u[2]);
f[3] = d[(e*6+3)*3+j] * (u[3] + u[0]);
f[4] = d[(e*6+4)*3+j] * (u[3] + u[1]);
f[5] = d[(e*6+5)*3+j] * (u[3] + u[2]);
G(N[0],c*3+j) = G(N[0],c*3+j) - f[0] + f[2] - f[3];
G(N[1],c*3+j) = G(N[1],c*3+j) + f[0] - f[1] - f[4];
G(N[2],c*3+j) = G(N[2],c*3+j) + f[1] - f[2] - f[5];
G(N[3],c*3+j) = G(N[3],c*3+j) + f[3] + f[4] + f[5];
}
}
}
// domain edge contributions: triangle superedges
for (std::size_t e=0; e<dsupedge[1].size()/3; ++e) {
const auto N = dsupedge[1].data() + e*3;
for (std::size_t c=0; c<ncomp; ++c) {
tk::real u[] = { U(N[0],c), U(N[1],c), U(N[2],c) };<--- Variable 'u' can be declared as const array
for (std::size_t j=0; j<3; ++j) {
tk::real f[3];
const auto d = dsupint[1].data();
f[0] = d[(e*3+0)*3+j] * (u[1] + u[0]);
f[1] = d[(e*3+1)*3+j] * (u[2] + u[1]);
f[2] = d[(e*3+2)*3+j] * (u[0] + u[2]);
G(N[0],c*3+j) = G(N[0],c*3+j) - f[0] + f[2];
G(N[1],c*3+j) = G(N[1],c*3+j) + f[0] - f[1];
G(N[2],c*3+j) = G(N[2],c*3+j) + f[1] - f[2];
}
}
}
// domain edge contributions: edges
for (std::size_t e=0; e<dsupedge[2].size()/2; ++e) {
const auto N = dsupedge[2].data() + e*2;
const auto d = dsupint[2].data() + e*3;
for (std::size_t c=0; c<ncomp; ++c) {
tk::real u[] = { U(N[0],c), U(N[1],c) };<--- Variable 'u' can be declared as const array
for (std::size_t j=0; j<3; ++j) {
tk::real f = d[j] * (u[1] + u[0]);
G(N[0],c*3+j) -= f;
G(N[1],c*3+j) += f;
}
}
}
// boundary integral
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
for (std::size_t e=0; e<triinpoel.size()/3; ++e) {
const auto N = triinpoel.data() + e*3;
const std::array< tk::real, 3 >
ba{ x[N[1]]-x[N[0]], y[N[1]]-y[N[0]], z[N[1]]-z[N[0]] },
ca{ x[N[2]]-x[N[0]], y[N[2]]-y[N[0]], z[N[2]]-z[N[0]] };
auto n = tk::cross( ba, ca );
n[0] /= 12.0;
n[1] /= 12.0;
n[2] /= 12.0;
for (std::size_t c=0; c<ncomp; ++c) {
tk::real u[] = { U(N[0],c), U(N[1],c), U(N[2],c) };<--- Variable 'u' can be declared as const array
auto uab = (u[0] + u[1])/4.0;
auto ubc = (u[1] + u[2])/4.0;
auto uca = (u[2] + u[0])/4.0;
tk::real g[] = { uab + uca + u[0],<--- Variable 'g' can be declared as const array
uab + ubc + u[1],
ubc + uca + u[2] };
for (std::size_t j=0; j<3; ++j) {
G(N[0],c*3+j) += g[j] * n[j];
G(N[1],c*3+j) += g[j] * n[j];
G(N[2],c*3+j) += g[j] * n[j];
}
}
}
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic pop
#endif
}
tk::real
refvel( tk::real r, tk::real p, tk::real v )
// *****************************************************************************
// Compute reference velocitity of the preconditioned system
//! \param[in] r Density
//! \param[in] p Pressure
//! \param[in] v Velocity magnitude
//! \return Reference velocity
// *****************************************************************************
{
auto K = g_cfg.get< tag::turkel >();
auto velinf = g_cfg.get< tag::velinf >();
auto vinf = tk::length( velinf[0], velinf[1], velinf[2] );
return std::min( eos::soundspeed( r, p ), std::max( v, K*vinf ) );
//return eos::soundspeed( r, p );
}
static std::tuple< tk::real, tk::real >
sigvel( tk::real p, tk::real T, tk::real v, tk::real vn )
// *****************************************************************************
// Compute signal velocitities of the preconditioned system
//! \param[in] p Pressure
//! \param[in] T Temperature
//! \param[in] v Velocity magnitude
//! \param[in] vn Face-normal velocity
//! \return v', c'
// *****************************************************************************
{
auto g = g_cfg.get< tag::mat_spec_heat_ratio >();
auto rgas = g_cfg.get< tag::mat_spec_gas_const >();
auto cp = g*rgas/(g-1.0);
auto r = p/T/rgas;
auto rp = r/p;
auto rt = -r/T;
auto vr = refvel( r, p, v );
auto vr2 = vr*vr;
auto beta = rp + rt/r/cp;
auto alpha = 0.5*(1.0 - beta*vr2);
auto vpri = vn*(1.0 - alpha);
auto cpri = std::sqrt( alpha*alpha*vn*vn + vr2 );
return { vpri, cpri };
}
static void
rusanov( const tk::UnsMesh::Coords& coord,<--- The function 'rusanov' is never used.
const tk::Fields& G,
const tk::real dsupint[],
std::size_t p,
std::size_t q,
const tk::real L[],
const tk::real R[],
tk::real f[] )
// *****************************************************************************
//! Compute advection fluxes on a single edge with Rusanov's flux
//! \param[in] coord Mesh node coordinates
//! \param[in] G Nodal gradients
//! \param[in] dsupint Domain superedge integral for this edge
//! \param[in] p Left node index of edge
//! \param[in] q Right node index of edge
//! \param[in,out] L Left physics state variables
//! \param[in,out] R Rigth physics state variables
//! \param[in,out] f Flux computed
// *****************************************************************************
{
auto ncomp = G.nprop() / 3;
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wvla"
#pragma clang diagnostic ignored "-Wvla-extension"
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wvla"
#endif
// will work on copies of physics variables
tk::real l[ncomp], r[ncomp];
memcpy( l, L, sizeof l );
memcpy( r, R, sizeof r );
// MUSCL reconstruction in edge-end points for flow variables
muscl( p, q, coord, G, l[0], l[1], l[2], l[3], l[4],
r[0], r[1], r[2], r[3], r[4] );
// dualface-normal velocities
auto nx = dsupint[0];
auto ny = dsupint[1];
auto nz = dsupint[2];
auto vnL = l[1]*nx + l[2]*ny + l[3]*nz;
auto vnR = r[1]*nx + r[2]*ny + r[3]*nz;
// pressure
auto pL = l[0];
auto pR = r[0];
// preconditioned wave speed
auto len = tk::length( nx, ny, nz );
auto [vpL, cpL] = sigvel( l[0], l[4], tk::length(l[1],l[2],l[3]), vnL );
auto [vpR, cpR] = sigvel( r[0], r[4], tk::length(r[1],r[2],r[3]), vnR );
// convert to conserved variables
auto g = g_cfg.get< tag::mat_spec_heat_ratio >();
auto rgas = g_cfg.get< tag::mat_spec_gas_const >();
l[0] = pL/l[4]/rgas;
l[1] *= l[0];
l[2] *= l[0];
l[3] *= l[0];
l[4] = pL/(g-1.0) + 0.5*(l[1]*l[1] + l[2]*l[2] + l[3]*l[3])/l[0];
r[0] = pR/r[4]/rgas;
r[1] *= r[0];
r[2] *= r[0];
r[3] *= r[0];
r[4] = pR/(g-1.0) + 0.5*(r[1]*r[1] + r[2]*r[2] + r[3]*r[3])/r[0];
// dissipation: option 1
//auto sL = std::abs(vpL) + cpL;
//auto sR = std::abs(vpR) + cpR;
//auto fw = std::max( sL, sR ) * len;
// dissipation: option 2
using std::abs;
using std::max;
auto sp = max(abs(vpL-cpL),max(abs(vpR-cpR),max(abs(vpL+cpL),abs(vpR+cpR))));
auto sL = -sp;
auto sR = +sp;
auto fw = std::max( sL, sR ) * len;
// flow fluxes
f[0] = l[0]*vnL + r[0]*vnR + fw*(r[0] - l[0]);
f[1] = l[1]*vnL + r[1]*vnR + (pL + pR)*nx + fw*(r[1] - l[1]);
f[2] = l[2]*vnL + r[2]*vnR + (pL + pR)*ny + fw*(r[2] - l[2]);
f[3] = l[3]*vnL + r[3]*vnR + (pL + pR)*nz + fw*(r[3] - l[3]);
f[4] = (l[4] + pL)*vnL + (r[4] + pR)*vnR + fw*(r[4] - l[4]);
// artificial viscosity
const auto stab2 = g_cfg.get< tag::stab2 >();
if (stab2) {
auto stab2coef = g_cfg.get< tag::stab2coef >();
auto fws = stab2coef * fw;
f[0] -= fws*(l[0] - r[0]);
f[1] -= fws*(l[1] - r[1]);
f[2] -= fws*(l[2] - r[2]);
f[3] -= fws*(l[3] - r[3]);
f[4] -= fws*(l[4] - r[4]);
}
if (ncomp == 5) return;
// MUSCL reconstruction in edge-end points for scalars
muscl( p, q, coord, G, l, r );
// scalar dissipation
auto sw = std::max( std::abs(vnL), std::abs(vnR) );
// scalar fluxes
for (std::size_t c=5; c<ncomp; ++c) {
f[c] = l[c]*vnL + r[c]*vnR + sw*(r[c] - l[c]);
}
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic pop
#endif
}
static void
hllc( const tk::UnsMesh::Coords& coord,<--- The function 'hllc' is never used.
const tk::Fields& G,
const tk::real dsupint[],
std::size_t p,
std::size_t q,
const tk::real L[],
const tk::real R[],
tk::real f[] )
// *****************************************************************************
//! Compute advection fluxes on a single edge with Harten-Lax-vanLeer-Contact
//! \param[in] coord Mesh node coordinates
//! \param[in] G Nodal gradients
//! \param[in] dsupint Domain superedge integral for this edge
//! \param[in] p Left node index of edge
//! \param[in] q Right node index of edge
//! \param[in,out] L Left physics state variables
//! \param[in,out] R Rigth physics state variables
//! \param[in,out] f Flux computed
//! \see Toro, Riemann Solver and Numerical Methods for Fluid Dynamics. 3rd
//! Edition, Springer, New York, 2009
//! \see Davis, Simplified Second-Order Godunov-Type Methods, SIAM J. Sci. Stat.
//! Comput. 9:445-473, 1988
//! \see Roe, Approximate Riemann Solvers, Parameter Vectors, and Difference
//! Schemes, J. Comput Phys., 43:357-372, 1981
// *****************************************************************************
{
auto ncomp = G.nprop() / 3;
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wvla"
#pragma clang diagnostic ignored "-Wvla-extension"
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wvla"
#endif
// will work on copies of physics variables
tk::real l[ncomp], r[ncomp];
memcpy( l, L, sizeof l );
memcpy( r, R, sizeof r );
// MUSCL reconstruction in edge-end points for flow variables
muscl( p, q, coord, G, l[0], l[1], l[2], l[3], l[4],
r[0], r[1], r[2], r[3], r[4] );
// dualface-normal velocities
auto nx = -dsupint[0];
auto ny = -dsupint[1];
auto nz = -dsupint[2];
auto len = tk::length( nx, ny, nz );
nx /= len;
ny /= len;
nz /= len;
auto qL = l[1]*nx + l[2]*ny + l[3]*nz;
auto qR = r[1]*nx + r[2]*ny + r[3]*nz;
// pressure
auto pL = l[0];
auto pR = r[0];
// preconditioned signal velocities
auto [vpL, cpL] = sigvel( l[0], l[4], tk::length(l[1],l[2],l[3]), qL*len );
auto [vpR, cpR] = sigvel( r[0], r[4], tk::length(r[1],r[2],r[3]), qR*len );
// convert to conserved variables
auto g = g_cfg.get< tag::mat_spec_heat_ratio >();
auto rgas = g_cfg.get< tag::mat_spec_gas_const >();
l[0] = pL/l[4]/rgas;
l[1] *= l[0];
l[2] *= l[0];
l[3] *= l[0];
l[4] = pL/(g-1.0) + 0.5*(l[1]*l[1] + l[2]*l[2] + l[3]*l[3])/l[0];
r[0] = pR/r[4]/rgas;
r[1] *= r[0];
r[2] *= r[0];
r[3] *= r[0];
r[4] = pR/(g-1.0) + 0.5*(r[1]*r[1] + r[2]*r[2] + r[3]*r[3])/r[0];
// preconditioned left and right wave speeds
// option 1
//auto sL = std::min( vpL - cpL, vpR - cpR );
//auto sR = std::max( vpL + cpL, vpR + cpR );
// option 2
//auto sL = vpL - cpL;
//auto sR = vpR + cpR;
// option 3
using std::abs;
using std::max;
auto sp = max(abs(vpL-cpL),max(abs(vpR-cpR),max(abs(vpL+cpL),abs(vpR+cpR))));
auto sL = -sp;
auto sR = +sp;
//using std::sqrt;
//auto hl = (l[4]/l[0] + pL) / l[0];
//auto hr = (r[4]/r[0] + pR) / r[0];
//auto srl = sqrt( l[0] );
//auto srr = sqrt( r[0] );
//auto hh = (srl*hl + srr*hr) / (srl + srr);
//auto uh = (srl*vpL + srr*vpR) / (srl + srr);
//auto ch = sqrt( (g-1.0)*(hh - 0.5*(uh*uh)) );
//// option 4
//auto sL = std::min( vpL - cpL, uh - ch );
//auto sR = std::max( vpR + cpR, uh + ch );
// option 5
//auto sL = uh - ch;
//auto sR = uh + ch;
// no preconditioning
//auto cL = eos::soundspeed(l[0],pL);
//auto cR = eos::soundspeed(r[0],pR);
//auto sL = fmin( qL - cL, qR - cR );
//auto sR = fmax( qL + cL, qR + cR );
// contact wave speed and pressure
auto tL = sL - qL;
auto tR = sR - qR;
auto sM = (r[0]*qR*tR - l[0]*qL*tL + pL - pR) / (r[0]*tR - l[0]*tL);
auto pS = pL - l[0]*tL*(qL - sM);
// intermediate left-, and right-state conserved unknowns
tk::real uL[ncomp], uR[ncomp];
auto s = sL - sM;
uL[0] = tL*l[0]/s;
uL[1] = (tL*l[1] + (pS-pL)*nx)/s;
uL[2] = (tL*l[2] + (pS-pL)*ny)/s;
uL[3] = (tL*l[3] + (pS-pL)*nz)/s;
uL[4] = (tL*l[4] - pL*qL + pS*sM)/s;
s = sR - sM;
uR[0] = tR*r[0]/s;
uR[1] = (tR*r[1] + (pS-pR)*nx)/s;
uR[2] = (tR*r[2] + (pS-pR)*ny)/s;
uR[3] = (tR*r[3] + (pS-pR)*nz)/s;
uR[4] = (tR*r[4] - pR*qR + pS*sM)/s;
auto L2 = -2.0*len;
nx *= L2;
ny *= L2;
nz *= L2;
// flow fluxes
if (sL > 0.0) {
auto qL2 = qL * L2;
f[0] = l[0]*qL2;
f[1] = l[1]*qL2 + pL*nx;
f[2] = l[2]*qL2 + pL*ny;
f[3] = l[3]*qL2 + pL*nz;
f[4] = (l[4] + pL)*qL2;
}
else if (sL <= 0.0 && sM > 0.0) {
auto qL2 = qL * L2;
auto sL2 = sL * L2;
f[0] = l[0]*qL2 + sL2*(uL[0] - l[0]);
f[1] = l[1]*qL2 + pL*nx + sL2*(uL[1] - l[1]);
f[2] = l[2]*qL2 + pL*ny + sL2*(uL[2] - l[2]);
f[3] = l[3]*qL2 + pL*nz + sL2*(uL[3] - l[3]);
f[4] = (l[4] + pL)*qL2 + sL2*(uL[4] - l[4]);
}
else if (sM <= 0.0 && sR >= 0.0) {
auto qR2 = qR * L2;
auto sR2 = sR * L2;
f[0] = r[0]*qR2 + sR2*(uR[0] - r[0]);
f[1] = r[1]*qR2 + pR*nx + sR2*(uR[1] - r[1]);
f[2] = r[2]*qR2 + pR*ny + sR2*(uR[2] - r[2]);
f[3] = r[3]*qR2 + pR*nz + sR2*(uR[3] - r[3]);
f[4] = (r[4] + pR)*qR2 + sR2*(uR[4] - r[4]);
}
else {
auto qR2 = qR * L2;
f[0] = r[0]*qR2;
f[1] = r[1]*qR2 + pR*nx;
f[2] = r[2]*qR2 + pR*ny;
f[3] = r[3]*qR2 + pR*nz;
f[4] = (r[4] + pR)*qR2;
}
// artificial viscosity
//const auto stab2 = g_cfg.get< tag::stab2 >();
//if (stab2) {
// auto stab2coef = g_cfg.get< tag::stab2coef >();
// auto sl = std::abs(vpL) + cpL;
// auto sr = std::abs(vpR) + cpR;
// auto fws = stab2coef * std::max(sl,sr) * len;
// f[0] -= fws*(l[0] - r[0]);
// f[1] -= fws*(l[1] - r[1]);
// f[2] -= fws*(l[2] - r[2]);
// f[3] -= fws*(l[3] - r[3]);
// f[4] -= fws*(l[4] - r[4]);
//}
if (ncomp == 5) return;
// MUSCL reconstruction in edge-end points for scalars
muscl( p, q, coord, G, l, r );
// scalar fluxes
//auto sw = std::max( std::abs(vpL), std::abs(vpR) ) * len;
//for (std::size_t c=5; c<ncomp; ++c) {
// f[c] = (l[c]*qL + r[c]*qR)*len + sw*(r[c] - l[c]);
//}
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic pop
#endif
}
static void
advdom( const tk::UnsMesh::Coords& coord,
const std::array< std::vector< std::size_t >, 3 >& dsupedge,
const std::array< std::vector< tk::real >, 3 >& dsupint,
const tk::Fields& G,
const tk::Fields& U,
// cppcheck-suppress constParameter
tk::Fields& R )
// *****************************************************************************
//! Compute domain integral for advection
//! \param[in] coord Mesh node coordinates
//! \param[in] dsupedge Domain superedges
//! \param[in] dsupint Domain superedge integrals
//! \param[in] G Nodal gradients
//! \param[in] U Solution vector of primitive variables at recent time step
//! \param[in,out] R Right-hand side vector computed
// *****************************************************************************
{
// number of transported scalars
auto ncomp = U.nprop();
// configure advection flux function
auto adv = [](){
const auto& flux = g_cfg.get< tag::flux >();
if (flux == "rusanov") return rusanov;
else if (flux == "hllc") return hllc;
else Throw( "Flux not correctly configured" );
}();
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wvla"
#pragma clang diagnostic ignored "-Wvla-extension"
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wvla"
#endif
// domain edge contributions: tetrahedron superedges
for (std::size_t e=0; e<dsupedge[0].size()/4; ++e) {
const auto N = dsupedge[0].data() + e*4;
tk::real u[4][ncomp];
for (std::size_t c=0; c<ncomp; ++c) {
u[0][c] = U(N[0],c);
u[1][c] = U(N[1],c);
u[2][c] = U(N[2],c);
u[3][c] = U(N[3],c);
}
// edge fluxes
tk::real f[6][ncomp];
const auto d = dsupint[0].data();
adv( coord, G, d+(e*6+0)*3, N[0], N[1], u[0], u[1], f[0] );
adv( coord, G, d+(e*6+1)*3, N[1], N[2], u[1], u[2], f[1] );
adv( coord, G, d+(e*6+2)*3, N[2], N[0], u[2], u[0], f[2] );
adv( coord, G, d+(e*6+3)*3, N[0], N[3], u[0], u[3], f[3] );
adv( coord, G, d+(e*6+4)*3, N[1], N[3], u[1], u[3], f[4] );
adv( coord, G, d+(e*6+5)*3, N[2], N[3], u[2], u[3], f[5] );
// edge flux contributions
for (std::size_t c=0; c<ncomp; ++c) {
R(N[0],c) = R(N[0],c) - f[0][c] + f[2][c] - f[3][c];
R(N[1],c) = R(N[1],c) + f[0][c] - f[1][c] - f[4][c];
R(N[2],c) = R(N[2],c) + f[1][c] - f[2][c] - f[5][c];
R(N[3],c) = R(N[3],c) + f[3][c] + f[4][c] + f[5][c];
}
}
// domain edge contributions: triangle superedges
for (std::size_t e=0; e<dsupedge[1].size()/3; ++e) {
const auto N = dsupedge[1].data() + e*3;
tk::real u[3][ncomp];
for (std::size_t c=0; c<ncomp; ++c) {
u[0][c] = U(N[0],c);
u[1][c] = U(N[1],c);
u[2][c] = U(N[2],c);
}
// edge fluxes
tk::real f[3][ncomp];
const auto d = dsupint[1].data();
adv( coord, G, d+(e*3+0)*3, N[0], N[1], u[0], u[1], f[0] );
adv( coord, G, d+(e*3+1)*3, N[1], N[2], u[1], u[2], f[1] );
adv( coord, G, d+(e*3+2)*3, N[2], N[0], u[2], u[0], f[2] );
// edge flux contributions
for (std::size_t c=0; c<ncomp; ++c) {
R(N[0],c) = R(N[0],c) - f[0][c] + f[2][c];
R(N[1],c) = R(N[1],c) + f[0][c] - f[1][c];
R(N[2],c) = R(N[2],c) + f[1][c] - f[2][c];
}
}
// domain edge contributions: edges
for (std::size_t e=0; e<dsupedge[2].size()/2; ++e) {
const auto N = dsupedge[2].data() + e*2;
tk::real u[2][ncomp];
for (std::size_t c=0; c<ncomp; ++c) {
u[0][c] = U(N[0],c);
u[1][c] = U(N[1],c);
}
// edge fluxes
tk::real f[ncomp];
const auto d = dsupint[2].data();
adv( coord, G, d+e*3, N[0], N[1], u[0], u[1], f );
// edge flux contributions
for (std::size_t c=0; c<ncomp; ++c) {
R(N[0],c) -= f[c];
R(N[1],c) += f[c];
}
}
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic pop
#endif
}
static void
advbnd( const std::vector< std::size_t >& triinpoel,
const std::array< std::vector< tk::real >, 3 >& coord,
const std::vector< std::uint8_t >& besym,
const tk::Fields& U,
tk::Fields& R )<--- Parameter 'R' can be declared as reference to const
// *****************************************************************************
//! Compute boundary integral for advection
//! \param[in] triinpoel Boundary face connectivity
//! \param[in] coord Mesh node coordinates
//! \param[in] besym Boundary element symmetry BC flags
//! \param[in] U Solution vector at recent time step
//! \param[in,out] R Right-hand side vector
// *****************************************************************************
{
auto ncomp = U.nprop();
auto g = g_cfg.get< tag::mat_spec_heat_ratio >();
auto rgas = g_cfg.get< tag::mat_spec_gas_const >();
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wvla"
#pragma clang diagnostic ignored "-Wvla-extension"
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wvla"
#endif
for (std::size_t e=0; e<triinpoel.size()/3; ++e) {
const auto N = triinpoel.data() + e*3;
auto rA = U(N[0],0)/U(N[0],4)/rgas;
auto ruA = U(N[0],1) * rA;
auto rvA = U(N[0],2) * rA;
auto rwA = U(N[0],3) * rA;
auto reA = U(N[0],0)/(g-1.0) + 0.5*(ruA*ruA + rvA*rvA + rwA*rwA)/rA;
auto rB = U(N[1],0)/U(N[1],4)/rgas;
auto ruB = U(N[1],1) * rB;
auto rvB = U(N[1],2) * rB;
auto rwB = U(N[1],3) * rB;
auto reB = U(N[1],0)/(g-1.0) + 0.5*(ruB*ruB + rvB*rvB + rwB*rwB)/rB;
auto rC = U(N[2],0)/U(N[2],4)/rgas;
auto ruC = U(N[2],1) * rC;
auto rvC = U(N[2],2) * rC;
auto rwC = U(N[2],3) * rC;
auto reC = U(N[2],0)/(g-1.0) + 0.5*(ruC*ruC + rvC*rvC + rwC*rwC)/rC;
const std::array< tk::real, 3 >
ba{ x[N[1]]-x[N[0]], y[N[1]]-y[N[0]], z[N[1]]-z[N[0]] },
ca{ x[N[2]]-x[N[0]], y[N[2]]-y[N[0]], z[N[2]]-z[N[0]] };
auto [nx,ny,nz] = tk::cross( ba, ca ); // 2A
nx /= 12.0;
ny /= 12.0;
nz /= 12.0;
tk::real vn, f[ncomp][3];
const auto sym = besym.data() + e*3;
vn = sym[0] ? 0.0 : (nx*U(N[0],1) + ny*U(N[0],2) + nz*U(N[0],3));
// flow
f[0][0] = rA*vn;
f[1][0] = ruA*vn + U(N[0],0)*nx;
f[2][0] = rvA*vn + U(N[0],0)*ny;
f[3][0] = rwA*vn + U(N[0],0)*nz;
f[4][0] = (reA + U(N[0],0))*vn;
// scalar
for (std::size_t c=5; c<ncomp; ++c) f[c][0] = U(N[0],c)*vn;
vn = sym[1] ? 0.0 : (nx*U(N[1],1) + ny*U(N[1],2) + nz*U(N[1],3));
// flow
f[0][1] = rB*vn;
f[1][1] = ruB*vn + U(N[1],0)*nx;
f[2][1] = rvB*vn + U(N[1],0)*ny;
f[3][1] = rwB*vn + U(N[1],0)*nz;
f[4][1] = (reB + U(N[1],0))*vn;
// scalar
for (std::size_t c=5; c<ncomp; ++c) f[c][1] = U(N[1],c)*vn;
vn = sym[2] ? 0.0 : (nx*U(N[2],1) + ny*U(N[2],2) + nz*U(N[2],3));
// flow
f[0][2] = rC*vn;
f[1][2] = ruC*vn + U(N[2],0)*nx;
f[2][2] = rvC*vn + U(N[2],0)*ny;
f[3][2] = rwC*vn + U(N[2],0)*nz;
f[4][2] = (reC + U(N[2],0))*vn;
// scalar
for (std::size_t c=5; c<ncomp; ++c) f[c][2] = U(N[2],c)*vn;
for (std::size_t c=0; c<ncomp; ++c) {
auto fab = (f[c][0] + f[c][1])/4.0;
auto fbc = (f[c][1] + f[c][2])/4.0;
auto fca = (f[c][2] + f[c][0])/4.0;
R(N[0],c) += fab + fca + f[c][0];
R(N[1],c) += fab + fbc + f[c][1];
R(N[2],c) += fbc + fca + f[c][2];
}
}
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic pop
#endif
}
static void
src( const std::array< std::vector< tk::real >, 3 >& coord,
const std::vector< tk::real >& v,
tk::real t,
const std::vector< tk::real >& tp,
tk::Fields& R )
// *****************************************************************************
// Compute source integral
//! \param[in] coord Mesh node coordinates
//! \param[in] v Nodal mesh volumes without contributions from other chares
//! \param[in] t Physical time
//! \param[in] tp Physical time for each mesh node
//! \param[in,out] R Right-hand side vector computed
// *****************************************************************************
{
auto src = problems::SRC();
if (!src) return;
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
for (std::size_t p=0; p<R.nunk(); ++p) {
if (g_cfg.get< tag::steady >()) t = tp[p];
auto s = src( x[p], y[p], z[p], t );
for (std::size_t c=0; c<s.size(); ++c) R(p,c) -= s[c] * v[p];
}
}
void
rhs( const std::array< std::vector< std::size_t >, 3 >& dsupedge,
const std::array< std::vector< tk::real >, 3 >& dsupint,
const std::array< std::vector< tk::real >, 3 >& coord,
const std::vector< std::size_t >& triinpoel,
const std::vector< std::uint8_t >& besym,
const tk::Fields& G,
const tk::Fields& U,
const std::vector< tk::real >& v,
tk::real t,
const std::vector< tk::real >& tp,
tk::Fields& R )
// *****************************************************************************
// Compute right hand side
//! \param[in] dsupedge Domain superedges
//! \param[in] dsupint Domain superedge integrals
//! \param[in] coord Mesh node coordinates
//! \param[in] triinpoel Boundary face connectivity
//! \param[in] besym Boundary element symmetry BC flags
//! \param[in] G Gradients in mesh nodes
//! \param[in] U Solution vector of primitive variables at recent time step
//! \param[in] v Nodal mesh volumes without contributions from other chares
//! \param[in] t Physical time
//! \param[in] tp Physical time for each mesh node
//! \param[in,out] R Right-hand side vector computed
// *****************************************************************************
{
Assert( U.nunk() == coord[0].size(), "Number of unknowns in solution "
"vector at recent time step incorrect" );
Assert( R.nunk() == coord[0].size(),
"Number of unknowns and/or number of components in right-hand "
"side vector incorrect" );
R.fill( 0.0 );
advdom( coord, dsupedge, dsupint, G, U, R );
advbnd( triinpoel, coord, besym, U, R );
src( coord, v, t, tp, R );
}
} // lax::
|