1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332 | #ifndef AMR_refinement_h
#define AMR_refinement_h
#include <algorithm>
#include "Compiler.hpp"
#include "tet_store.hpp"
#include "node_connectivity.hpp"
// TODO: make this have a base class to support multiple generator schemes
// using the policy design pattern
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#endif
namespace AMR {
class refinement_t {
private:
size_t DEFAULT_REFINEMENT_LEVEL = 0; //TODO: Is this in the right place?
size_t MIN_REFINEMENT_LEVEL = DEFAULT_REFINEMENT_LEVEL;
// list of "intermediate" edges to be deleted
std::set< edge_t > delete_list;
public:
//! Default constructor for migration
refinement_t() {}
//! Constructor taking a user-specified max refinement level
refinement_t( size_t u_mrl ) :<--- Class 'refinement_t' has a constructor with 1 argument that is not explicit. [+]Class 'refinement_t' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
MAX_REFINEMENT_LEVEL( u_mrl ) {}
size_t MAX_REFINEMENT_LEVEL;
// TODO: Document this
child_id_list_t generate_child_ids( tet_store_t& tet_store, size_t parent_id, size_t count = MAX_CHILDREN)
{
//return morton_id_generator_t::get_children_ids(parent_id);
return tet_store.generate_child_ids(parent_id, count);
}
/**
* @brief function to detect when an invalid refinement is
* invoked
*
* @param tet_store Tet store to use
* @param tet_id Id the of the tet which will be refined
*
* @return A bool stating if the tet can be validly refined
*/
bool check_allowed_refinement( tet_store_t& tet_store, size_t tet_id)
{
Refinement_State& master_element = tet_store.data(tet_id);<--- Variable 'master_element' can be declared as reference to const
// These asserts mean we never actually try refine a 1:2 or 1:4
assert( master_element.refinement_case !=
Refinement_Case::one_to_two);
assert( master_element.refinement_case !=
Refinement_Case::one_to_four);
// cppcheck-suppress assertWithSideEffect
assert( tet_store.is_active(tet_id) );
// Check this won't take us past the max refinement level
if (master_element.refinement_level >= MAX_REFINEMENT_LEVEL)
{
return false;
}
// If we got here, we didn't detect anything which tells us not
// to refine
return true;
}
/**
* @brief Method which takes a tet id, and deduces the other
* parameters needed to perform a 1:2
*
* @param tet_store Tet store to use
* @param node_connectivity Mesh node connectivity (graph)
* @param tet_id The id to refine 1:2
*/
void refine_one_to_two( tet_store_t& tet_store, node_connectivity_t& node_connectivity, size_t tet_id)
{
edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
node_pair_t nodes = find_single_refinement_nodes(tet_store,edge_list);
refine_one_to_two( tet_store, node_connectivity, tet_id, nodes[0], nodes[1]);
}
/*
//! @brief Method which takes a tet id, and transforms arguments
//! into the form needed for the main 1:2 refinement method
//! @param tet_id The id to refine 1:2
void refine_one_to_two(
size_t tet_id,
std::string edge_key
)
{
std::vector<std::string> nodes = util::split(edge_key,KEY_DELIM);
size_t edge_node_A_id = std::stoul (nodes[0],nullptr,0);
size_t edge_node_B_id = std::stoul (nodes[1],nullptr,0);
refine_one_to_two( tet_id, edge_node_A_id, edge_node_B_id);
}
*/
/**
* @brief Refine a given tet id into 2 children.
* NOTE: Does not do any validity checking (currently?)
*
* @param tet_store Tet store to use
* @param node_connectivity Mesh node connectivity (graph)
* @param tet_id Id of tet to refine
* @param edge_node_A_id The first node of id of the edge which
* will be split
* @param edge_node_B_id The second node of id of the
* edge which will be split
*/
void refine_one_to_two(
tet_store_t& tet_store,
node_connectivity_t& node_connectivity,
size_t tet_id,
size_t edge_node_A_id,
size_t edge_node_B_id
)
{
trace_out << "refine_one_to_two" << std::endl;
if (!check_allowed_refinement(tet_store,tet_id)) return;
tet_t original_tet = tet_store.get(tet_id);
//coordinate_t original_tet_c = node_connectivity->id_to_coordinate(id);
size_t new_node_id = node_connectivity.add( edge_node_A_id, edge_node_B_id );
/// Split existing tet into two new tets
// The two new tets will be the same, but for each an edge will
// be cut, losing an edge replaced by E
tet_t new_tet1;
tet_t new_tet2;
// Create a new tet that is based on the original
copy_tet(&new_tet1, &original_tet);
// Replace all node ids in tet that were pointing to A with new_node_id
replace_node(&new_tet1, edge_node_A_id, new_node_id);
// Create a new tet that is based on the original
copy_tet(&new_tet2, &original_tet);
// Replace all node ids in tet that were pointing to B with new_node_id
replace_node(&new_tet2, edge_node_B_id, new_node_id);
// Now, update the edge list
// Generate edges for split
tet_store.edge_store.split(edge_node_A_id, edge_node_B_id, new_node_id,
Edge_Lock_Case::intermediate);
child_id_list_t child_list = generate_child_ids(tet_store,tet_id, 2);
size_t first_child_id = child_list[0];
size_t second_child_id = child_list[1];
// Add the two new tets to the system
size_t new_tet_id = first_child_id;
tet_store.add(
first_child_id,
new_tet1,
Refinement_Case::one_to_two,
tet_id
);
//size_t new_tet_id2 = second_child_id;
tet_store.add(
second_child_id,
new_tet2,
Refinement_Case::one_to_two,
tet_id
);
//trace_out << "1:2 DOING REFINE OF " << tet_id << ". Adding " << child_list[0] << " and " << child_list[1] << std::endl;
// This call is only needed to add a single edge, from the new
// node to the node on the normal to that face, but avoids
// directly calculating which nodes that is
tet_store.generate_edges(new_tet_id);
// Currently we lock one per tet, around the split node. We
// also need to lock the two "arms" which come out from it
//lock_edges_from_node(new_tet_id, new_node_id, Edge_Lock_Case::intermediate);
//lock_edges_from_node(new_tet_id2, new_node_id, Edge_Lock_Case::intermediate);
// Deactivate parent tet?
tet_store.deactivate(tet_id);
//lock_edges_from_node(new_node_id, Edge_Lock_Case::intermediate);
trace_out << "Adding " << new_node_id << " to intermediate list " << std::endl;
tet_store.intermediate_list.insert(new_node_id);
}
/**
* @brief Method which takes a tet id, and deduces the other
* parameters needed to perform a 1:4
*
* @param tet_store Tet store to use
* @param node_connectivity Mesh node connectivity (graph)
* @param tet_id The id to refine 1:4
*/
void refine_one_to_four( tet_store_t& tet_store,
node_connectivity_t& node_connectivity, size_t tet_id)
{
trace_out << "do refine 1:4 " << std::endl;
//bool face_refine = false;
size_t face_refine_id = 0; // FIXME: Does this need a better default
face_list_t face_list = tet_store.generate_face_lists(tet_id);
// Iterate over each face
for (size_t face = 0; face < NUM_TET_FACES; face++)
{
int num_face_refine_edges = 0;
face_ids_t face_ids = face_list[face];
trace_out << "face ids " <<
face_ids[0] << ", " <<
face_ids[1] << ", " <<
face_ids[2] << ", " <<
std::endl;
edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_ids);
// For this face list, see which ones need refining
trace_out << "Looping to " << NUM_FACE_NODES << std::endl;
for (size_t k = 0; k < NUM_FACE_NODES; k++)
{
trace_out << "nodes " << k << std::endl;
edge_t edge = face_edge_list[k];
if (tet_store.edge_store.get(edge).needs_refining == 1)
{
num_face_refine_edges++;
trace_out << "Ref " << edge << " Num face => " << num_face_refine_edges << std::endl;
}
// Check for locked edges
// This case only cares about faces with no locks
if (tet_store.edge_store.lock_case(edge) != Edge_Lock_Case::unlocked)
{
// Abort this face
trace_out << "Face has lock it's not this one " << face << std::endl;
num_face_refine_edges = 0;
break;
}
trace_out << "Num face => " << num_face_refine_edges << std::endl;
}
if (num_face_refine_edges >= 2)
{
assert(num_face_refine_edges < 4);
//face_refine = true;
trace_out << "Accepting face " << face << std::endl;
face_refine_id = face;
break;
}
}
tet_t tet = tet_store.get(tet_id);
size_t opposite_offset = AMR::node_connectivity_t::face_list_opposite(face_list, face_refine_id);
size_t opposite_id = tet[opposite_offset];
trace_out << "1:4 tet mark id " << tet_id << std::endl;
trace_out << "opposite offset " << opposite_offset << std::endl;
trace_out << "opposite id " << opposite_id << std::endl;
trace_out << "face refine id " << face_refine_id << std::endl;
trace_out << "face list 0 " << face_list[face_refine_id][0] << std::endl;
trace_out << "face list 1 " << face_list[face_refine_id][1] << std::endl;
trace_out << "face list 2 " << face_list[face_refine_id][2] << std::endl;
refine_one_to_four(tet_store, node_connectivity, tet_id, face_list[face_refine_id], opposite_id);
}
/**
* @brief Method which takes a tet id, and deduces the other
* parameters needed to perform a 1:4, as a part of an 8:4 deref
*
* @param tet_store Tet store to use
* @param node_connectivity Mesh node connectivity (graph)
* @param tet_id The id to refine 1:4
* @param kept_edges Vector of edges to keep after deref-ref
*/
void deref_refine_one_to_four( tet_store_t& tet_store,
node_connectivity_t& node_connectivity, size_t tet_id,
std::vector< edge_t >& kept_edges)
{
trace_out << "do refine 1:4 " << std::endl;
//bool face_refine = false;
size_t face_refine_id = 0; // FIXME: Does this need a better default
face_list_t face_list = tet_store.generate_face_lists(tet_id);
// Iterate over each face
for (size_t face = 0; face < NUM_TET_FACES; face++)
{
int num_face_refine_edges = 0;
face_ids_t face_ids = face_list[face];
trace_out << "face ids " <<
face_ids[0] << ", " <<
face_ids[1] << ", " <<
face_ids[2] << ", " <<
std::endl;
edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_ids);
// For this face list, see which ones need refining
trace_out << "Looping to " << NUM_FACE_NODES << std::endl;
for (size_t k = 0; k < NUM_FACE_NODES; k++)
{
edge_t edge = face_edge_list[k];
trace_out << "edge-nodes " << edge.get_data()[0] << "-"
<< edge.get_data()[1] << std::endl;
if (tet_store.edge_store.get(edge).needs_refining == 2)
{
num_face_refine_edges++;
trace_out << "Ref " << edge << " Num face => " << num_face_refine_edges << std::endl;
}
// Check for locked edges
// This case only cares about faces with no locks
if (tet_store.edge_store.lock_case(edge) != Edge_Lock_Case::unlocked)
{
// Abort this face
trace_out << "Face has lock it's not this one " << face << std::endl;
num_face_refine_edges = 0;
break;
}
trace_out << "Num face => " << num_face_refine_edges << std::endl;
}
if (num_face_refine_edges >= 2)
{
assert(num_face_refine_edges < 4);
//face_refine = true;
trace_out << "Accepting face " << face << std::endl;
face_refine_id = face;
break;
}
}
tet_t tet = tet_store.get(tet_id);
size_t opposite_offset = AMR::node_connectivity_t::face_list_opposite(face_list, face_refine_id);
size_t opposite_id = tet[opposite_offset];
trace_out << "1:4 tet mark id " << tet_id << std::endl;
trace_out << "opposite offset " << opposite_offset << std::endl;
trace_out << "opposite id " << opposite_id << std::endl;
trace_out << "face refine id " << face_refine_id << std::endl;
trace_out << "face list 0 " << face_list[face_refine_id][0] << std::endl;
trace_out << "face list 1 " << face_list[face_refine_id][1] << std::endl;
trace_out << "face list 2 " << face_list[face_refine_id][2] << std::endl;
// store edges that should not be removed due to the deref-ref
auto kept_edge_list = AMR::edge_store_t::
generate_keys_from_face_ids(face_list[face_refine_id]);
for (size_t i=0; i<3; ++i) {
kept_edges.push_back(kept_edge_list[i]);
}
refine_one_to_four(tet_store, node_connectivity, tet_id, face_list[face_refine_id], opposite_id);
}
/**
* @brief Refine a given tet id into 4 children.
* NOTE: Does not do any validity checking (currently?)
*
* @param tet_store Tet store to use
* @param node_connectivity Mesh node connectivity (graph)
* @param tet_id The id of the tet to refine
* @param face_ids The ids which make the face to be split
* @param opposite_id The remaining id which is "opposite" the
* split face
*/
void refine_one_to_four(
tet_store_t& tet_store,
node_connectivity_t& node_connectivity,
size_t tet_id,
std::array<size_t, NUM_FACE_NODES> face_ids,<--- Parameter 'face_ids' can be declared as const array
size_t opposite_id
)
{
trace_out << "refine_one_to_four" << std::endl;
if (!check_allowed_refinement(tet_store,tet_id)) return;
trace_out << "Refining tet_id " << tet_id <<
" 1:4 opposite edge " << opposite_id << std::endl;
tet_t t = tet_store.get(tet_id);
trace_out << "Tet has nodes " <<
t[0] << ", " <<
t[1] << ", " <<
t[2] << ", " <<
t[3] << ", " <<
std::endl;
trace_out << "face_ids " <<
face_ids[0] << ", " <<
face_ids[1] << ", " <<
face_ids[2] << ", " <<
std::endl;
size_t A = face_ids[0];
size_t B = face_ids[1];
size_t C = face_ids[2];
size_t D = opposite_id;
trace_out <<
" A " << A <<
" B " << B <<
" C " << C <<
" D " << D <<
std::endl;
// Make new nodes
//coordinate_t AB_mid = node_connectivity->find_mid_point(A, B);
size_t AB = node_connectivity.add(A,B);
//coordinate_t AC_mid = node_connectivity->find_mid_point(A, C);
size_t AC = node_connectivity.add(A,C);
//coordinate_t BC_mid = node_connectivity->find_mid_point(B, C);
size_t BC = node_connectivity.add(B,C);
// Use nodes to update edges
// All added edges will be locked due to containing intermediate points
// Split Outer face edges
tet_store.edge_store.split(A, C, AC, Edge_Lock_Case::intermediate);
tet_store.edge_store.split(A, B, AB, Edge_Lock_Case::intermediate);
tet_store.edge_store.split(B, C, BC, Edge_Lock_Case::intermediate);
// Connect D to intermediate points
tet_store.edge_store.generate(D, AC, Edge_Lock_Case::intermediate);
tet_store.edge_store.generate(D, BC, Edge_Lock_Case::intermediate);
tet_store.edge_store.generate(D, AB, Edge_Lock_Case::intermediate);
// Connect inner edges
tet_store.edge_store.generate(AC, BC, Edge_Lock_Case::intermediate);
tet_store.edge_store.generate(AC, AB, Edge_Lock_Case::intermediate);
tet_store.edge_store.generate(AB, BC, Edge_Lock_Case::intermediate);
// Make new Tets
// This is just the node opposite the face plus each pair
// of the news nodes, and the old corner
// FIXME: How to find that near corner programatically?
// Hard coded solution
// A AC AB D
// AC AB BC D
// AC BC C D
// AB B BC D
size_t num_children = 4;
child_id_list_t child = generate_child_ids(tet_store,tet_id, num_children);
// Outsides
tet_store.add(child[0], {{A, AB, AC, D}}, Refinement_Case::one_to_four, tet_id);
tet_store.add(child[2], {{AC, BC, C, D}}, Refinement_Case::one_to_four, tet_id);
tet_store.add(child[3], {{AB, B, BC, D}}, Refinement_Case::one_to_four, tet_id);
// Center
size_t center_id = child[1]; // 1 to preserve Jacobian order
tet_store.add(center_id, {{AC, AB, BC, D}}, Refinement_Case::one_to_four, tet_id);
// TODO: replace this with a more concise way to lock the correct edges
tet_store.add_center(center_id);
/*
lock_edges_from_node(child[0], AB, Edge_Lock_Case::intermediate);
lock_edges_from_node(child[0], AC, Edge_Lock_Case::intermediate);
lock_edges_from_node(child[2], AC, Edge_Lock_Case::intermediate);
lock_edges_from_node(child[2], BC, Edge_Lock_Case::intermediate);
lock_edges_from_node(child[3], AB, Edge_Lock_Case::intermediate);
lock_edges_from_node(child[3], BC, Edge_Lock_Case::intermediate);
lock_edges_from_node(center_id, AC, Edge_Lock_Case::intermediate);
lock_edges_from_node(center_id, AB, Edge_Lock_Case::intermediate);
lock_edges_from_node(center_id, BC, Edge_Lock_Case::intermediate);
*/
tet_store.deactivate(tet_id);
//trace_out << "1:4 DOING REFINE OF " << tet_id << ". Adding "
// << child[0] << ", "
// << child[1] << ", "
// << child[2] << ", "
// << child[3]
// << std::endl;
/*
lock_edges_from_node(AB, Edge_Lock_Case::intermediate);
lock_edges_from_node(AC, Edge_Lock_Case::intermediate);
lock_edges_from_node(BC, Edge_Lock_Case::intermediate);
*/
trace_out << "Adding " << AB << " to intermediate list " << std::endl;
tet_store.intermediate_list.insert(AB);
trace_out << "Adding " << AC << " to intermediate list " << std::endl;
tet_store.intermediate_list.insert(AC);
trace_out << "Adding " << BC << " to intermediate list " << std::endl;
tet_store.intermediate_list.insert(BC);
}
/**
* @brief Refine a given tet id into 8 children.
* NOTE: Does not do any validity checking (currently?)
*
* @param tet_store Tet store to use
* @param node_connectivity Mesh node connectivity (graph)
* @param tet_id Id of tet to refine
*/
void refine_one_to_eight( tet_store_t& tet_store,
node_connectivity_t& node_connectivity, size_t tet_id)
{
trace_out << "refine_one_to_eight" << std::endl;
if (!check_allowed_refinement(tet_store,tet_id)) return;
// Split every edge into two
// Makes 4 tets out of the old corners and 3 near mid-points
// Make 4 out of the midpoints
// For Tet {ABCD} need to know all (non-repeating) node pairs
// {AB} {AC} {AD} {BC} {BD} {CD}
// This can either be hard coded, or generated with a 2d loop
// The loop would just be i=0..4, j=i..4
//
tet_t tet = tet_store.get(tet_id);
size_t A = tet[0];
size_t B = tet[1];
size_t C = tet[2];
size_t D = tet[3];
trace_out << "A " << A << " B " << B << " C " << C << " D " << D
<< std::endl;
// Generate pairs of nodes (i.e edges)
// Hard coding for now, can swap out for loop
//coordinate_t AB_mid = node_connectivity->find_mid_point(A,B);
size_t AB = node_connectivity.add(A,B);
//coordinate_t AC_mid = node_connectivity->find_mid_point(A,C);
size_t AC = node_connectivity.add(A,C);
//coordinate_t AD_mid = node_connectivity->find_mid_point(A,D);
size_t AD = node_connectivity.add(A,D);
//coordinate_t BC_mid = node_connectivity->find_mid_point(B,C);
size_t BC = node_connectivity.add(B,C);
//coordinate_t BD_mid = node_connectivity->find_mid_point(B,D);
size_t BD = node_connectivity.add(B,D);
//coordinate_t CD_mid = node_connectivity->find_mid_point(C,D);
size_t CD = node_connectivity.add(C,D);
// Update edges
tet_store.edge_store.split(A, C, AC, Edge_Lock_Case::unlocked);
tet_store.edge_store.split(A, B, AB, Edge_Lock_Case::unlocked);
tet_store.edge_store.split(A, D, AD, Edge_Lock_Case::unlocked);
tet_store.edge_store.split(B, C, BC, Edge_Lock_Case::unlocked);
tet_store.edge_store.split(B, D, BD, Edge_Lock_Case::unlocked);
tet_store.edge_store.split(C, D, CD, Edge_Lock_Case::unlocked);
// Outside edges for face ABC
tet_store.edge_store.generate(AC, BC, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(AC, AB, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(AB, BC, Edge_Lock_Case::unlocked);
// Outside edges for face ACD
tet_store.edge_store.generate(AC, AD, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(AD, CD, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(AC, CD, Edge_Lock_Case::unlocked);
// Outside edges for face BCD
tet_store.edge_store.generate(BD, CD, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(BD, BC, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(CD, BC, Edge_Lock_Case::unlocked);
// Outside edges for face ABD
tet_store.edge_store.generate(AD, BD, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(AB, AD, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(AB, BD, Edge_Lock_Case::unlocked);
// Interior Edges
tet_store.edge_store.generate(AC, BD, Edge_Lock_Case::unlocked);
tet_store.edge_store.generate(CD, AD, Edge_Lock_Case::unlocked);
// Add the new tets
//
// External
// A AB AC AD - A
// B BA BC BD - B
// C CA CB CD - C
// D DA DB DC - D
// -
// Internal (for a face BDC, it's the intermediate and mid opposite)
// BC CD DB AC - BDC
// AB BD AD AC - ABD
// AB AC BC BD - ABC
// AC AD CD BD - ACD
//
// TODO: This is actually generating IDs not trying to get them
child_id_list_t child = generate_child_ids(tet_store,tet_id);
// This order should give a positive Jacobian
tet_store.add(child[0], {{A, AB, AC, AD}}, Refinement_Case::one_to_eight, tet_id);
tet_store.add(child[1], {{B, BC, AB, BD}}, Refinement_Case::one_to_eight, tet_id);
tet_store.add(child[2], {{C, AC, BC, CD}}, Refinement_Case::one_to_eight, tet_id);
tet_store.add(child[3], {{D, AD, CD, BD}}, Refinement_Case::one_to_eight, tet_id);
tet_store.add(child[4], {{BC, CD, AC, BD}}, Refinement_Case::one_to_eight, tet_id);
tet_store.add(child[5], {{AB, BD, AC, AD}}, Refinement_Case::one_to_eight, tet_id);
tet_store.add(child[6], {{AB, BC, AC, BD}}, Refinement_Case::one_to_eight, tet_id);
tet_store.add(child[7], {{AC, BD, CD, AD}}, Refinement_Case::one_to_eight, tet_id);
tet_store.deactivate(tet_id);
//trace_out << "1:8 DOING REFINE OF " << tet_id << ". "
// << child[0] << ", "
// << child[1] << ", "
// << child[2] << ", "
// << child[3] << ", "
// << child[4] << ", "
// << child[5] << ", "
// << child[6] << ", "
// << child[7]
// << std::endl;
}
// This is just a simple assignment, but I wanted to abstract it
// for if we change the underlying type to something which a simple
// assignment is no longer safe
/**
* @brief Function to duplicate (deep copy) a tet. Useful for when
* you want to make a tet that's very similar to an existing one
*
* @param out The tet to store the copy
* @param original The tet to copy the data from
*/
void copy_tet(tet_t* out, tet_t* original)
{
// NOTE: This will do a deep copy, so is safer than it may look
*out = *original;
}
// This is just a std::replace, but may need to be more complicated
// in the future?
/**
* @brief function to take an existing list of tet ids and
* replace one. This can be useful for when you want to build very
* similar tets which share nodes
*
* @param tet Tet to perform operation on
* @param remove Element to be replaced
* @param add Element to replace with
*/
void replace_node(tet_t* tet, size_t remove, size_t add)
{
std::replace(tet->begin(), tet->end(), remove, add);
}
/**
* @brief Function to find out slot in the x,y,z data arrays a tet lives
*
* // NOTE: this is _currently_ trivial, but will be nice if we for
* example swap data stores to a map
*
* @param tet_store Tet store to use
* @param tet tet of the tet to look for
* @param element offset into that tet to look at
*
* @return tet into data arrays the tet lives
*/
// TODO: Move this (or rename?)
size_t tet_id_to_node_id( tet_store_t& tet_store, size_t tet, size_t element) {
return tet_store.get(tet)[element];
}
/**
* @brief Function to find the nodes which make up the
* single (or first?º edge which needs to be refined in an given
* edge_list
*
* @param tet_store Tet store to use
* @param edge_list The edge list to search for a refinement edge
*
* @return The node pair which represent the edge which needs
* refining
*/
node_pair_t find_single_refinement_nodes( tet_store_t& tet_store, edge_list_t edge_list)<--- Parameter 'edge_list' can be declared as const array
{
node_pair_t returned_nodes;
bool found_break = false;
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t edge = edge_list[k];
if (tet_store.edge_store.get(edge).needs_refining == 1)
{
returned_nodes[0] = edge.first();
returned_nodes[1] = edge.second();
trace_out << "1:2 needs to be split on " <<
returned_nodes[0] << " and " <<
returned_nodes[1] << std::endl;
found_break = true;
break;
}
}
assert(found_break);
return returned_nodes;
}
void lock_intermediates(
tet_store_t& tet_store,
const std::unordered_set<size_t>& intermediate_list,
Edge_Lock_Case lock_case
)
{
// Loop over all edges
// If the edge is in the intermediate_list, deal with it
for (const auto& p : tet_store.edge_store.edges)
{
auto e = p.first;
size_t k1 = e.first();
size_t k2 = e.second();
// Can we make this double search cheaper?
if (
(intermediate_list.count(k1)) ||
(intermediate_list.count(k2))
)
{
trace_out << "Locking intermediate " << e << " from " << k1 << " and " << k2 << std::endl;
tet_store.edge_store.get(e).lock_case = lock_case;
tet_store.edge_store.get(e).needs_refining = 0;
}
}
}
// TODO: remove this, it's horrible and not efficient.
// WARNING: THIS GOES OVER ALL TETS!!!!
void lock_edges_from_node(
tet_store_t& tet_store,
size_t node_id,
Edge_Lock_Case lock_case
)
{
// Iterate over edges of ALL tet
for (const auto& kv : tet_store.tets)
{
size_t tet_id = kv.first;
edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
// If it contains that node id, mark it using lock_case
edge_t edge = edge_list[k];
size_t edge_node_A_id = edge.first();
size_t edge_node_B_id = edge.second();
if ((edge_node_A_id == node_id) || (edge_node_B_id == node_id)) {
trace_out << " found node in " << edge_node_A_id << " - " << edge_node_B_id << " set to " << lock_case << std::endl;
tet_store.edge_store.get(edge).lock_case = lock_case;
tet_store.edge_store.get(edge).needs_refining = 0;
}
}
}
}
// void lock_edges_from_node(
// tet_store_t& tet_store,
// size_t tet_id,
// size_t node_id,
// Edge_Lock_Case lock_case
// )
// {
// // Iterate over edges of of tet
// edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
// for (size_t k = 0; k < NUM_TET_EDGES; k++)
// {
// // If it contains that node id, mark it using lock_case
// edge_t edge = edge_list[k];
//
// size_t edge_node_A_id = edge.first();
// size_t edge_node_B_id = edge.second();
//
// if ((edge_node_A_id == node_id) || (edge_node_B_id == node_id)) {
// tet_store.edge_store.get(edge).lock_case = lock_case;
// }
// }
// }
///// DEREFINEMENT STARTS HERE /////
/**
* @brief Function to iterate over children and remove them
*
* @param tet_store Tet store to use
* @param parent_id Id of the parent for whom you will delete the
* children
*/
void derefine_children(tet_store_t& tet_store, size_t parent_id)
{
// For a given tet_id, find and delete its children
Refinement_State& parent = tet_store.data(parent_id);
for (auto c : parent.children)
{
tet_store.erase(c);
//tet_store.deactivate(c);
/*
auto children = tet_store.data(c).children;
// Debug printing
std::cout << "tet " << c << "has ";
for (auto child : children)
{
std::cout << " _child " << child;
}
std::cout << std::endl;
*/
}
parent.children.clear();
}
/**
* @brief Common code for derefinement. Deactives the children and
* actives the parent
*
* @param tet_store Tet store to use
* @param parent_id The id of the parent
*/
void generic_derefine(tet_store_t& tet_store, size_t parent_id)
{
derefine_children(tet_store,parent_id);
tet_store.activate(parent_id);
}
/**
* @brief Perform 2->1 derefinement on tet
*
* @param tet_store Tet store to use
* @param parent_id The id of the parent
*/
void derefine_two_to_one(tet_store_t& tet_store, node_connectivity_t&, size_t parent_id)
{
//if (!check_allowed_derefinement(tet_store,parent_id)) return;
// build a delete-list of edges/intermediates first, mesh_adapter
// deletes edges from this list later
determine_deletelist_of_intermediates(tet_store, parent_id);
generic_derefine(tet_store,parent_id);
}
/**
* @brief Perform 4->1 derefinement on tet
*
* @param tet_store Tet store to use
* @param parent_id The id of the parent
*/
void derefine_four_to_one(tet_store_t& tet_store, node_connectivity_t&, size_t parent_id)
{
//if (!check_allowed_derefinement(tet_store,parent_id)) return;
// build a delete-list of edges/intermediates first, mesh_adapter
// deletes edges from this list later
determine_deletelist_of_intermediates(tet_store, parent_id);
generic_derefine(tet_store,parent_id);
}
/**
* @brief Perform 8->1 derefinement on tet
*
* @param tet_store Tet store to use
* @param parent_id The id of the parent
*/
void derefine_eight_to_one(tet_store_t& tet_store, node_connectivity_t&, size_t parent_id)
{
//if (!check_allowed_derefinement(tet_store,parent_id)) return;
generic_derefine(tet_store,parent_id);
// TODO: Do we delete the nodes? Do we even have nodes?
// Delete the center edges
// If edge isn't in the parent, delete it? Is there a better way?
edge_list_t parent_edges = tet_store.generate_edge_keys(parent_id);
Refinement_State& parent = tet_store.data(parent_id);<--- Variable 'parent' can be declared as reference to const
for (auto c : parent.children)
{
edge_list_t child_edges = tet_store.generate_edge_keys(c);
// build a delete-list of non-matching edges first, then
// mesh_adapter deletes edges from this list later
determine_deletelist_of_non_matching_edges(child_edges, parent_edges);
}
}
// TODO: Document This.
void derefine_four_to_two(tet_store_t& tet_store, node_connectivity_t& node_connectivity, size_t parent_id)
{
//if (!check_allowed_derefinement(tet_store,parent_id)) return;
// A 4:2 (implemented as a 4:1 + 1:2) keeps three child edges,
// two of which are from the 1:2 splitting. The third edge
// connects the opposite parent node with the intermediate node
// (of the 1:2 splitting). Figure out which is this edge, and
// remove it from the delete list.
// 1. first store the possible edges that connect parent nodes
// with the intermediate node of the 1:2. There are 2
// possibilities, because we can already eliminate the
// parents of the intermediate node.
auto edge = find_edge_not_derefined(tet_store,
node_connectivity, parent_id);
std::array< edge_t, 2 > int_par_edges;
auto parent_tet = tet_store.get(parent_id);
auto npnode = node_connectivity.data().at(edge.get_data());
size_t icount(0);
for (size_t i=0; i<NUM_TET_NODES; ++i) {
if (parent_tet[i] != edge.first() &&
parent_tet[i] != edge.second()) {
int_par_edges[icount] = edge_t(parent_tet[i], npnode);
++icount;
}
}
assert(icount == 2);
// 2. find which one of these edges is present in the 4 children
child_id_list_t children = tet_store.data(parent_id).children;
bool ipedge_set = false;
edge_t int_par_edge;
for (size_t i=0; i<children.size(); i++) {
edge_list_t chedge_list = tet_store.generate_edge_keys(children[i]);
// Check each edge, and compare with possible edges
for (size_t k=0; k<NUM_TET_EDGES; k++) {
for (const auto& ipedge : int_par_edges) {
if (chedge_list[k] == ipedge) {<--- Consider using std::find_if algorithm instead of a raw loop.
int_par_edge = ipedge;
ipedge_set = true;
break;
}
}
}
}
assert(ipedge_set);
derefine_four_to_one(tet_store, node_connectivity, parent_id);
refine_one_to_two( tet_store, node_connectivity, parent_id,
edge.first(), edge.second() );
// remove edge not derefined from delete list
delete_list.erase(int_par_edge);
std::vector< edge_t > parent_edges;
parent_edges.push_back(edge);
remove_from_deletelist(node_connectivity, parent_edges);
}
// TODO: Document This.
void derefine_eight_to_two(tet_store_t& tet_store, node_connectivity_t& node_connectivity, size_t parent_id)
{
//if (!check_allowed_derefinement(tet_store,parent_id)) return;
auto edge = find_edge_not_derefined(tet_store,
node_connectivity, parent_id);
derefine_eight_to_one(tet_store, node_connectivity, parent_id);
refine_one_to_two( tet_store, node_connectivity, parent_id,
edge.first(), edge.second() );
// remove edge not derefined from delete list
std::vector< edge_t > parent_edges;
parent_edges.push_back(edge);
remove_from_deletelist(node_connectivity, parent_edges);
}
// TODO: Document This.
void derefine_eight_to_four(tet_store_t& tet_store, node_connectivity_t& node_connectivity, size_t parent_id)
{
//if (!check_allowed_derefinement(tet_store,parent_id)) return;
// TODO: think about if the logic for these derefs are right
derefine_eight_to_one(tet_store, node_connectivity, parent_id);
std::vector< edge_t > kept_edges;
deref_refine_one_to_four( tet_store, node_connectivity,
parent_id, kept_edges);
// remove edge not derefined from delete list
remove_from_deletelist(node_connectivity, kept_edges);
}
/**
* @brief Loop over children and determine delete-list of all intermediate edges
*
* @param tet_store Tet store to use
* @param parent_id Id of parent
*/
void determine_deletelist_of_intermediates(tet_store_t& tet_store, size_t parent_id)
{
Refinement_State& parent = tet_store.data(parent_id);<--- Variable 'parent' can be declared as reference to const
auto parent_edges = tet_store.generate_edge_keys(parent_id);
std::set< edge_t > parent_edge_set;
for (auto pe:parent_edges) parent_edge_set.insert(pe);
for (auto c : parent.children)
{
edge_list_t edge_list = tet_store.generate_edge_keys(c);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t edge = edge_list[k];
// accept this code may try delete an edge which has already gone
if (tet_store.edge_store.exists(edge)) {
if (parent_edge_set.count(edge) == 0)
{
trace_out << "child " << c << " adding to delete list: "
<< edge.first() << " - " << edge.second() << std::endl;
delete_list.insert(edge);
}
}
}
}
}
/**
* @brief Remove 'intermediate' edges (based on parent edges) from
* delete list
*
* @param node_connectivity Node connectivity data structure
* @param parent_edges List of parent edges whose 'child' edges need
* to be removed from the delete list
*/
void remove_from_deletelist(
node_connectivity_t& node_connectivity,
const std::vector< edge_t >& parent_edges )
{
for (const auto& edge:parent_edges) {
auto npnode = node_connectivity.data().at(edge.get_data());
edge_t e1(edge.first(),npnode);
edge_t e2(edge.second(),npnode);
delete_list.erase(e1);
delete_list.erase(e2);
}
}
/**
* @brief Deletes the intermediate edge in the delete list for derefinement
*
* @param tet_store Tet store to use
*/
void delete_intermediates_of_children(tet_store_t& tet_store)
{
for (const auto& edge : delete_list) {
tet_store.edge_store.erase(edge);
tet_store.intermediate_list.erase(edge.get_data()[0]);
tet_store.intermediate_list.erase(edge.get_data()[1]);
}
delete_list.clear();
}
/**
* @brief If edge in candidate is not present in basis, add edge
* (candidate) to delete list
*
* @param candidate The edge list which is to be searched and deleted
* @param basis The edge list to check against
*/
void determine_deletelist_of_non_matching_edges(edge_list_t candidate,<--- Parameter 'candidate' can be declared as const array
edge_list_t basis)<--- Parameter 'basis' can be declared as const array
{
trace_out << "Looking for edges to delete" << std::endl;
// TODO: Sanity check this now we changed to edge_t
// Loop over the edges in each child. Look over the basis and
// if we can't find it, delete it
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t search_key = candidate[k];
// Search the basis for it
bool found_it = false;
for (size_t l = 0; l < NUM_TET_EDGES; l++)
{
edge_t key = basis[l];
if (search_key == key)
{
found_it = true;
}
}
// If we didn't find it, delete it
if (!found_it)
{
// Delete it
//tet_store.edge_store.erase(search_key);
trace_out << "adding to delete list: "
<< search_key.first() << " - " << search_key.second()
<< std::endl;
delete_list.insert(search_key);
}
}
}
/**
* @brief function to detect when an invalid derefinement is
* invoked
*
* @param tet_store Tet store to use
* @param tet_id Id the of the tet which will be de-refined
*
* @return A bool stating if the tet can be validly de-refined
*/
bool check_allowed_derefinement( tet_store_t& tet_store, size_t tet_id)
{
Refinement_State& master_element = tet_store.data(tet_id);<--- Variable 'master_element' can be declared as reference to const
// Check this won't take us past the max refinement level
if (master_element.refinement_level <= MIN_REFINEMENT_LEVEL)
{
return false;
}
// If we got here, we didn't detect anything which tells us not
// to
return true;
}
// HERE BE DRAGONS! THIS IS DANGEROUS IF YOU USE IT WRONG
// For every child of parent_id, set his children to our won
// TODO: set a flag for the curious user to know we trashed the children
void overwrite_children(
tet_store_t& tet_store,
const child_id_list_t& to_be_replaced,
const child_id_list_t& replace_with
)
{
for (auto c : to_be_replaced)
{
tet_store.data(c).children = replace_with;
}
}
/**
* @brief function to detect which edge should not get derefined
*
* @param tet_store Tet store to use
* @param node_connectivity Node connectivity to use
* @param tet_id Id the of the tet which will be de-refined
*
* @return Array of size two containing nodes of required edge
*/
edge_t find_edge_not_derefined(
tet_store_t& tet_store,
node_connectivity_t& node_connectivity,
size_t tet_id)
{
// 2 nonparent nodes set to derefine for a 4:2
// 5 nonparent nodes set to derefine for an 8:2
// will have 2 or 5 nonparent nodes set to deref; Figure out which
// edge is the one that is not set to deref
auto derefine_node_set = find_derefine_node_set(tet_store, tet_id);
//// Do number of points
//std::unordered_set<size_t> derefine_node_set;
// Find the set of nodes which are not in the parent
std::unordered_set<size_t> non_parent_nodes =
child_exclusive_nodes(tet_store, tet_id);
// from the above non_parent_nodes set and derefine_node_set,
// figureout which node should be removed
std::size_t ed_A(0), ed_B(0);
for (auto npn:non_parent_nodes) {
if (derefine_node_set.count(npn) == 0) {
// we've found the node that should not be removed, now we
// need to find the edge it belongs to
auto nonderef_edge = node_connectivity.get(npn);
ed_A = nonderef_edge[0];
ed_B = nonderef_edge[1];
//std::cout << "do-not-deref-APAN " << "A " << nd_edge[0]
// << " B " << nd_edge[1] << std::endl;
}
}
assert(ed_A!=ed_B);
edge_t nd_edge(ed_A, ed_B);
return nd_edge;
}
/**
* @brief function to detect what intermediate/non-parent nodes are
* marked for derefinement
*
* @param tet_store Tet store to use
* @param tet_id Id of the tet which will be de-refined
*
* @return Set of nodes of marked for derefinement
*/
std::unordered_set< size_t > find_derefine_node_set(
tet_store_t& tet_store,
size_t tet_id)
{
// Set of nodes which are not in the parent
std::unordered_set<size_t> non_parent_nodes =
child_exclusive_nodes(tet_store, tet_id);
std::unordered_set<size_t> derefine_node_set, unmarked_deref_node_set,
final_deref_node_set;
child_id_list_t children = tet_store.data(tet_id).children;
// Look at children
trace_out << tet_id << " Looping over " << children.size() << "children" << std::endl;
for (size_t i = 0; i < children.size(); i++)
{
trace_out << "child: " << children[i] << std::endl;
// TODO: Is this in element or tet ids?
edge_list_t edge_list = tet_store.generate_edge_keys(children[i]);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t edge = edge_list[k];
// TODO: where do we makr the edges that need to be derefed? parent of child?
// Check each node, see if its an intermediate
size_t A = edge.first();
size_t B = edge.second();
trace_out << "checking edge for deref " << A << " - " << B << std::endl;
//if (tet_store.is_intermediate(A))
if (non_parent_nodes.count(A) )
{
if (tet_store.edge_store.get(edge).needs_derefining) {
trace_out << "Adding " << A << std::endl;
derefine_node_set.insert(A);
}
else {
unmarked_deref_node_set.insert(A);
//trace_out << "NOT added " << A << std::endl;
}
}
//if (tet_store.is_intermediate(B))
if (non_parent_nodes.count(B))
{
if (tet_store.edge_store.get(edge).needs_derefining) {
trace_out << "Adding " << B << std::endl;
derefine_node_set.insert(B);
}
else {
unmarked_deref_node_set.insert(B);
//trace_out << "NOT added " << B << std::endl;
}
}
}
}
//trace_out << "marked for deref: " << derefine_node_set.size() << std::endl;
//trace_out << "NOT marked for deref: " << unmarked_deref_node_set.size() << std::endl;
// remove nodes that are unmarked for derefinement
for (auto drnode : derefine_node_set) {
if (unmarked_deref_node_set.count(drnode) == 0) {
final_deref_node_set.insert(drnode);
trace_out << "Final deref node " << drnode << std::endl;
}
}
derefine_node_set = final_deref_node_set;
return derefine_node_set;
}
std::unordered_set<size_t> child_exclusive_nodes(tet_store_t& tet_store,
size_t tet_id)
{
std::unordered_set<size_t> non_parent_nodes;
// array
auto parent_tet = tet_store.get(tet_id);
// convert to set
std::unordered_set<size_t> parent_set(begin(parent_tet), end(parent_tet));
child_id_list_t children = tet_store.data(tet_id).children;
for (size_t i = 0; i < children.size(); i++)
{
auto child_tet = tet_store.get( children[i] );
// Look at nodes, if not present add to set
for (std::size_t j = 0; j < NUM_TET_NODES; j++)
{
auto node = child_tet[j];
if (parent_set.count(node) == 0)
{
non_parent_nodes.insert(node);
}
}
}
trace_out <<" Found " << non_parent_nodes.size() << " non parent nodes " << std::endl;
return non_parent_nodes;
}
};
}
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(STRICT_GNUC)
#pragma GCC diagnostic pop
#endif
#endif // guard
|