1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242 | // *****************************************************************************
/*!
\file tests/unit/Inciter/AMR/TestError.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.,
2022-2025 J. Bakosi
All rights reserved. See the LICENSE file for details.
\brief Unit tests for AMR error indicators in Inciter/AMR/Error.h
\details Unit tests for AMR error indicators in Inciter/AMR/Error.h. All
unit tests start from simple mesh connectivities defined in the code. The
tetrahedron mesh in Gmsh ASCII format is as follows. Note that ids start
from zero in the code, but from one in Gmsh.
\code{.sh}
$MeshFormat
2.2 0 8
$EndMeshFormat
$Nodes
14
1 0 0 0
2 1 0 0
3 1 1 0
4 0 1 0
5 0 0 1
6 1 0 1
7 1 1 1
8 0 1 1
9 0.5 0.5 0
10 0.5 0.5 1
11 0.5 0 0.5
12 1 0.5 0.5
13 0.5 1 0.5
14 0 0.5 0.5
$EndNodes
$Elements
24
1 4 1 0 12 14 9 11
2 4 1 0 10 14 13 12
3 4 1 0 14 13 12 9
4 4 1 0 10 14 12 11
5 4 1 0 1 14 5 11
6 4 1 0 7 6 10 12
7 4 1 0 14 8 5 10
8 4 1 0 8 7 10 13
9 4 1 0 7 13 3 12
10 4 1 0 1 4 14 9
11 4 1 0 13 4 3 9
12 4 1 0 3 2 12 9
13 4 1 0 4 8 14 13
14 4 1 0 6 5 10 11
15 4 1 0 1 2 9 11
16 4 1 0 2 6 12 11
17 4 1 0 6 10 12 11
18 4 1 0 2 12 9 11
19 4 1 0 5 14 10 11
20 4 1 0 14 8 10 13
21 4 1 0 13 3 12 9
22 4 1 0 7 10 13 12
23 4 1 0 14 4 13 9
24 4 1 0 14 1 9 11
$EndElements
\endcode
*/
// *****************************************************************************
#include <limits><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include "NoWarning/tut.hpp"<--- Include file: "NoWarning/tut.hpp" not found.
#include "TUTConfig.hpp"<--- Include file: "TUTConfig.hpp" not found.
#include "Types.hpp"
#include "Fields.hpp"
#include "Reorder.hpp"<--- Include file: "Reorder.hpp" not found.
#include "DerivedData.hpp"<--- Include file: "DerivedData.hpp" not found.
#include "AMR/Error.hpp"<--- Include file: "AMR/Error.hpp" not found.
#ifndef DOXYGEN_GENERATING_OUTPUT
namespace tut {
//! All tests in group inherited from this base
struct AMRError_common {
// floating point precision tolerance
const tk::real pr = std::numeric_limits< tk::real >::epsilon();
// mesh node coordinates
std::array< std::vector< tk::real >, 3 > coord {{
{{ 0, 1, 1, 0, 0, 1, 1, 0, 0.5, 0.5, 0.5, 1, 0.5, 0 }},
{{ 0, 0, 1, 1, 0, 0, 1, 1, 0.5, 0.5, 0, 0.5, 1, 0.5 }},
{{ 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0.5, 0.5, 0.5, 0.5 }} }};
// mesh connectivity for simple tetrahedron-only mesh
std::vector< std::size_t > inpoel { 12, 14, 9, 11,
10, 14, 13, 12,
14, 13, 12, 9,
10, 14, 12, 11,
1, 14, 5, 11,
7, 6, 10, 12,
14, 8, 5, 10,
8, 7, 10, 13,
7, 13, 3, 12,
1, 4, 14, 9,
13, 4, 3, 9,
3, 2, 12, 9,
4, 8, 14, 13,
6, 5, 10, 11,
1, 2, 9, 11,
2, 6, 12, 11,
6, 10, 12, 11,
2, 12, 9, 11,
5, 14, 10, 11,
14, 8, 10, 13,
13, 3, 12, 9,
7, 10, 13, 12,
14, 4, 13, 9,
14, 1, 9, 11 };
//! Test jump error indicator (mostly bounds) for tetrahedron mesh
void TestErrorIndicator( const char* errtype ) {
// Shift node IDs to start from zero
tk::shiftToZero( inpoel );
// find out number of points in mesh connectivity
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
auto npoin = *minmax.second + 1;
// Generate elements surrounding points
auto esup = tk::genEsup( inpoel, 4 );
// Generate edge connectivity
auto inpoed = tk::genInpoed( inpoel, 4, esup );
// create error indicator object to get access to error indicators
AMR::Error err;
using AMR::edge_t;
// generate a constant scalar field
tk::Fields uc( npoin, 1 );
uc.fill( 1.2 );
// test jump error indicator on all edges
for (std::size_t e=0; e<inpoed.size()/2; ++e) {
edge_t edge{ inpoed[e*2],inpoed[e*2+1] };
auto r = err.scalar( uc, edge, 0, coord, inpoel, esup, errtype );
ensure_equals( "edge error of constant field incorrect", r, 0.0, pr );
}
// generate a linear scalar field with a slope in only x direction
tk::Fields ux( npoin, 1 );
for (std::size_t p=0; p<npoin; ++p) ux(p,0) = coord[0][p];
// test jump error indicator on all edges
for (std::size_t e=0; e<inpoed.size()/2; ++e) {
edge_t edge{ inpoed[e*2],inpoed[e*2+1] };
auto r = err.scalar( ux, edge, 0, coord, inpoel, esup, errtype );
ensure( "edge error < 0.0", r > -pr );
ensure( "edge error > 1.0", r < 1.0+pr );
}
// generate a linear scalar field with a slope in only y direction
tk::Fields uy( npoin, 1 );
for (std::size_t p=0; p<npoin; ++p) uy(p,0) = coord[1][p];
// test jump error indicator on all edges
for (std::size_t e=0; e<inpoed.size()/2; ++e) {
edge_t edge{ inpoed[e*2],inpoed[e*2+1] };
auto r = err.scalar( uy, edge, 0, coord, inpoel, esup, errtype );
ensure( "edge error < 0.0", r > -pr );
ensure( "edge error > 1.0", r < 1.0+pr );
}
// generate a linear scalar field with a slope in only z direction
tk::Fields uz( npoin, 1 );
for (std::size_t p=0; p<npoin; ++p) uz(p,0) = coord[2][p];
// test jump error indicator on all edges
for (std::size_t e=0; e<inpoed.size()/2; ++e) {
edge_t edge{ inpoed[e*2],inpoed[e*2+1] };
auto r = err.scalar( uz, edge, 0, coord, inpoel, esup, errtype );
ensure( "edge error < 0.0", r > -pr );
ensure( "edge error > 1.0", r < 1.0+pr );
}
// generate linear vector field with different slopes for different components
tk::Fields u3( npoin, 3 );
for (std::size_t p=0; p<npoin; ++p) {
u3(p,0) = 2.0*coord[0][p];
u3(p,1) = 1.5*coord[1][p];
u3(p,2) = -0.5*coord[2][p];
}
// test jump error indicator on all edges
for (std::size_t e=0; e<inpoed.size()/2; ++e) {
edge_t edge{ inpoed[e*2],inpoed[e*2+1] };
auto rx = err.scalar( u3, edge, 0, coord, inpoel, esup, errtype );
ensure( "edge error < 0.0", rx > -pr );
ensure( "edge error > 1.0", rx < 1.0+pr );
auto ry = err.scalar( u3, edge, 1, coord, inpoel, esup, errtype );
ensure( "edge error < 0.0", ry > -pr );
ensure( "edge error > 1.0", ry < 1.0+pr );
auto rz = err.scalar( u3, edge, 2, coord, inpoel, esup, errtype );
ensure( "edge error < 0.0", rz > -pr );
ensure( "edge error > 1.0", rz < 1.0+pr );
}
// generate a quadratic scalar field with a slope in only z direction
tk::Fields u2z( npoin, 1 );
for (std::size_t p=0; p<npoin; ++p) u2z(p,0) = coord[2][p]*coord[2][p];
// test jump error indicator on all edges
for (std::size_t e=0; e<inpoed.size()/2; ++e) {
edge_t edge{ inpoed[e*2],inpoed[e*2+1] };
auto r = err.scalar( u2z, edge, 0, coord, inpoel, esup, errtype );
ensure( "edge error < 0.0", r > -pr );
ensure( "edge error > 1.0", r < 1.0+pr );
}
}
};
//! Test group shortcuts
using AMRError_group = test_group< AMRError_common, MAX_TESTS_IN_GROUP >;
using AMRError_object = AMRError_group::object;
//! Define test group
static AMRError_group AMRError( "Inciter/AMR/Error" );
//! Test definitions for group
//! Test jump error indicator for tetrahedron mesh
template<> template<>
void AMRError_object::test< 1 >() {
set_test_name( "jump indicator on scalar" );
TestErrorIndicator( "jump" );
}
//! Test jump error indicator for tetrahedron mesh
template<> template<>
void AMRError_object::test< 2 >() {
set_test_name( "Hessian indicator on scalar" );
TestErrorIndicator( "hessian" );
}
} // tut::
#endif // DOXYGEN_GENERATING_OUTPUT
|