1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// *****************************************************************************
/*!
  \file      src/Physics/BC.cpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.,
             2022-2024 J. Bakosi
             All rights reserved. See the LICENSE file for details.
  \brief     Boundary conditions
*/
// *****************************************************************************

#include "BC.hpp"
#include "EOS.hpp"
#include "Box.hpp"
#include "Problems.hpp"
#include "InciterConfig.hpp"

namespace inciter {

extern ctr::Config g_cfg;

} // ::inciter

namespace physics {

using inciter::g_cfg;

void
dirbc( tk::Fields& U,
       tk::real t,
       const std::array< std::vector< tk::real >, 3 >& coord,
       const std::vector< std::unordered_set< std::size_t > >& boxnodes,
       const std::vector< std::size_t >& dirbcmask,
       const std::vector< double >& dirbcval )
// *****************************************************************************
//  Set Dirichlet boundary conditions at nodes
//! \param[in] t Physical time at which to evaluate BCs
//! \param[in] U Solution vector at recent time step
//! \param[in] coord Mesh node coordinates
//! \param[in] boxnodes List of nodes at which box user ICs are set
//! \param[in] dirbcmask Nodes and component masks for Dirichlet BCs
//! \param[in] dirbcval Nodes and component values for Dirichlet BCs
// *****************************************************************************
{
  if (g_cfg.get< tag::bc_dir >().empty()) return;

  auto ncomp = U.nprop();
  auto nmask = ncomp + 1;

  Assert( dirbcmask.size() % nmask == 0, "Size mismatch" );
  Assert( dirbcval.size() % nmask == 0, "Size mismatch" );

  const auto& x = coord[0];
  const auto& y = coord[1];
  const auto& z = coord[2];
  auto ic = problems::IC();

  for (std::size_t i=0; i<dirbcmask.size()/nmask; ++i) {
    auto p = dirbcmask[i*nmask+0];      // local node id
    auto u = ic( x[p], y[p], z[p], t ); // evaluate solution/ic
    problems::box( p, u, boxnodes );    // overwrite with box value
    for (std::size_t c=0; c<ncomp; ++c) {
      auto mask = dirbcmask[i*nmask+1+c];
      if (mask == 1) {                              // mask == 1: IC+box value
        U(p,c) = u[c];
      } else if (mask == 2 && !dirbcval.empty()) {  // mask == 2: BC value
        U(p,c) = dirbcval[i*nmask+1+c];
      }
    }
  }
}

void
dirbcp( tk::Fields& U,
        const std::array< std::vector< tk::real >, 3 >& coord,
        const std::vector< std::size_t >& dirbcmaskp,
        const std::vector< double >& dirbcvalp )
// *****************************************************************************
//  Set pressure Dirichlet boundary conditions at nodes
//! \param[in] U Solution vector at recent time step
//! \param[in] coord Mesh node coordinates
//! \param[in] dirbcmaskp Nodes and component masks for Dirichlet BCs
//! \param[in] dirbcvalp Nodes and component values for Dirichlet BCs
// *****************************************************************************
{
  if (g_cfg.get< tag::pre_bc_dir >().empty()) return;

  std::size_t nmask = 1 + 1;

  Assert( dirbcmaskp.size() % nmask == 0, "Size mismatch" );
  Assert( dirbcvalp.size() % nmask == 0, "Size mismatch" );

  const auto& x = coord[0];
  const auto& y = coord[1];
  const auto& z = coord[2];
  auto ic = problems::PRESSURE_IC();

  for (std::size_t i=0; i<dirbcmaskp.size()/nmask; ++i) {
    auto p = dirbcmaskp[i*nmask+0];      // local node id
    auto mask = dirbcmaskp[i*nmask+1];
    if (mask == 1) {                               // mask == 1: IC value
      U(p,0) = ic( x[p], y[p], z[p] );
    } else if (mask == 2 && !dirbcvalp.empty()) {  // mask == 2: BC value
      U(p,0) = dirbcvalp[i*nmask+1];
    }
  }
}

void
symbc( tk::Fields& U,
       const std::vector< std::size_t >& symbcnodes,
       const std::vector< tk::real >& symbcnorms,
       std::size_t pos )
// *****************************************************************************
//  Set symmetry boundary conditions at nodes
//! \param[in] U Solution vector at recent time step
//! \param[in] symbcnodes Node ids at which to set symmetry BCs
//! \param[in] symbcnorms Normals at nodes at which to set symmetry BCs
//! \param[in] pos Position at which the three velocity components are in U
// *****************************************************************************
{
  if (g_cfg.get< tag::bc_sym >().empty()) return;

  Assert( symbcnodes.size()*3 == symbcnorms.size(), "Size mismatch" );

  for (std::size_t i=0; i<symbcnodes.size(); ++i) {
    auto p = symbcnodes[i];
    auto n = symbcnorms.data() + i*3;
    auto& u = U(p,pos+0);
    auto& v = U(p,pos+1);
    auto& w = U(p,pos+2);
    auto vn = u*n[0] + v*n[1] + w*n[2];
    u -= vn * n[0];
    v -= vn * n[1];
    w -= vn * n[2];
  }
}

void
noslipbc( tk::Fields& U,<--- Parameter 'U' can be declared as reference to const
          const std::vector< std::size_t >& noslipbcnodes,
          std::size_t pos )
// *****************************************************************************
//  Set noslip boundary conditions at nodes
//! \param[in] U Solution vector at recent time step
//! \param[in] noslipbcnodes Node ids at which to set noslip BCs
//! \param[in] pos Position at which the three velocity components are in U
// *****************************************************************************
{
  if (g_cfg.get< tag::bc_noslip >().empty()) return;

  for (auto p : noslipbcnodes) U(p,pos+0) = U(p,pos+1) = U(p,pos+2) = 0.0;
}

void
farbc( tk::Fields& U,
       const std::vector< std::size_t >& farbcnodes,
       const std::vector< tk::real >& farbcnorms )
// *****************************************************************************
//  Set farfield boundary conditions at nodes
//! \param[in] U Solution vector at recent time step
//! \param[in] farbcnodes Nodes ids at which to set farfield BCs
//! \param[in] farbcnorms Normals at nodes at which to set farfield BCs
// *****************************************************************************
{
  if (g_cfg.get< tag::bc_far >().empty()) return;

  Assert( farbcnodes.size()*3 == farbcnorms.size(), "Size mismatch" );

  // cppcheck-suppress unreadVariable
  tk::real fr = g_cfg.get< tag::bc_far_density >();

  const auto& fue = g_cfg.get< tag::bc_far_velocity >();
  ErrChk( !fue.empty(), "No farfield velocity specified" );
  // cppcheck-suppress unreadVariable
  tk::real fu = fue[0];<--- Unmatched suppression: unreadVariable
  // cppcheck-suppress unreadVariable
  tk::real fv = fue[1];<--- Unmatched suppression: unreadVariable
  // cppcheck-suppress unreadVariable
  tk::real fw = fue[2];<--- Unmatched suppression: unreadVariable

  tk::real fp = g_cfg.get< tag::bc_far_pressure >();

  for (std::size_t i=0; i<farbcnodes.size(); ++i) {
    auto p  = farbcnodes[i];
    auto nx = farbcnorms[i*3+0];
    auto ny = farbcnorms[i*3+1];
    auto nz = farbcnorms[i*3+2];
    auto& r  = U(p,0);
    auto& ru = U(p,1);
    auto& rv = U(p,2);
    auto& rw = U(p,3);
    auto& re = U(p,4);
    //auto vn = (ru*nx + rv*ny + rw*nz)/r;
    auto vn = fu*nx + fv*ny + fw*nz;
    //auto a = eos::soundspeed( r,
    //           eos::pressure( re - 0.5*(ru*ru + rv*rv + rw*rw)/r ) );
    auto a = eos::soundspeed( fr, fp );
    auto M = vn / a;
    if (M <= -1.0) {
      // supersonic inflow, all characteristics from outside
      r  = fr;
      ru = fr * fu;
      rv = fr * fv;
      rw = fr * fw;
      re = eos::totalenergy( fr, fu, fv, fw, fp );
    } else if (M > -1.0 && M < 0.0) {
      // subsonic inflow: 1 outgoing and 4 incoming characteristics,
      // pressure from inside, rest from outside
      auto pr = eos::pressure( re - 0.5*(ru*ru + rv*rv + rw*rw)/r );
      r  = fr;
      ru = fr * fu;
      rv = fr * fv;
      rw = fr * fw;
      re = eos::totalenergy( fr, fu, fv, fw, pr );
    } else if (M >= 0.0 && M < 1.0) {
      // subsonic outflow: 1 incoming and 4 outgoing characteristics,
      // pressure from outside, rest from inside
      re = eos::totalenergy( r, ru/r, rv/r, rw/r, fp );
    }
  }
}

void
prebc( tk::Fields& U,
       const std::vector< std::size_t >& prebcnodes,
       const std::vector< tk::real >& prebcvals )
// *****************************************************************************
//  Set pressure boundary conditions at nodes
//! \param[in] U Solution vector at recent time step
//! \param[in] prebcnodes Node ids at which to set pressure BCs
//! \param[in] prebcvals Density and pressure values at pressure BC nodes
// *****************************************************************************
{
  Assert( prebcnodes.size()*2 == prebcvals.size(), "Size mismatch" );

  for (std::size_t i=0; i<prebcnodes.size(); ++i) {
    auto p = prebcnodes[i];
    U(p,0) = prebcvals[i*2+0];
    U(p,4) = eos::totalenergy( U(p,0), U(p,1)/U(p,0), U(p,2)/U(p,0),
                               U(p,3)/U(p,0), prebcvals[i*2+1] );
  }
}

} // physics::