1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
// *****************************************************************************
/*!
  \file      src/Physics/Problems.cpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.,
             2022-2024 J. Bakosi
             All rights reserved. See the LICENSE file for details.
  \brief     Problem-specific functions. Initial conditions, source terms.
*/
// *****************************************************************************

#include "Problems.hpp"
#include "EOS.hpp"
#include "InciterConfig.hpp"
#include "Box.hpp"

namespace inciter {

extern ctr::Config g_cfg;

} // ::inciter

namespace problems {

using inciter::g_cfg;

namespace userdef {

static std::vector< tk::real >
ic( tk::real, tk::real, tk::real, tk::real )
// *****************************************************************************
//! Set homogeneous initial conditions for a generic user-defined problem
//! \return Values of conserved variables
// *****************************************************************************
{
  // pressure-based solvers

  const auto& solver = g_cfg.get< tag::solver >();
  if (solver == "chocg") {
    const auto& ncomp = g_cfg.get< tag::problem_ncomp >();
    std::vector< tk::real > u( ncomp, 0.0 );
    auto ic_velocity = g_cfg.get< tag::ic_velocity >();
    auto large = std::numeric_limits< double >::max();
    if (std::abs(ic_velocity[0] - large) > 1.0e-12) u[0] = ic_velocity[0];
    if (std::abs(ic_velocity[1] - large) > 1.0e-12) u[1] = ic_velocity[1];
    if (std::abs(ic_velocity[2] - large) > 1.0e-12) u[2] = ic_velocity[2];
    return u;
  }
  else if (solver == "lohcg") {
    const auto& ncomp = g_cfg.get< tag::problem_ncomp >();
    std::vector< tk::real > u( ncomp, 0.0 );
    auto ic_velocity = g_cfg.get< tag::ic_velocity >();
    auto large = std::numeric_limits< double >::max();
    if (std::abs(ic_velocity[0] - large) > 1.0e-12) u[1] = ic_velocity[0];
    if (std::abs(ic_velocity[1] - large) > 1.0e-12) u[2] = ic_velocity[1];
    if (std::abs(ic_velocity[2] - large) > 1.0e-12) u[3] = ic_velocity[2];
    return u;
  }

  // density-based solvers

  auto ic_density = g_cfg.get< tag::ic_density >();
  const auto& ic_velocity = g_cfg.get< tag::ic_velocity >();
  ErrChk( ic_velocity.size() == 3, "ic_velocity must have 3 components" );

  std::vector< tk::real > u( 5, 0.0 );

  u[0] = ic_density;
  u[1] = u[0] * ic_velocity[0];
  u[2] = u[0] * ic_velocity[1];
  u[3] = u[0] * ic_velocity[2];

  auto ic_pressure = g_cfg.get< tag::ic_pressure >();
  auto ic_energy = g_cfg.get< tag::ic_energy >();
  auto ic_temperature = g_cfg.get< tag::ic_temperature >();

  auto largereal = std::numeric_limits< double >::max();

  if (std::abs(ic_pressure - largereal) > 1.0e-12) {

    u[4] = eos::totalenergy( u[0], u[1]/u[0], u[2]/u[0], u[3]/u[0],
                             ic_pressure );

  } else if (std::abs(ic_energy - largereal) > 1.0e-12) {

    u[4] = u[0] * ic_energy;

  } else if (std::abs(ic_temperature - largereal) > 1.0e-12) {

    auto cv = g_cfg.get< tag::mat_spec_heat_const_vol >();
    if (std::abs(cv - largereal) > 1.0e-12) {
      u[4] = u[0] * ic_temperature * cv;
    }

  } else {

    Throw( "IC background energy cannot be computed. Must specify "
           "one of background pressure, energy, or velocity." );

  }

  return u;
}

static tk::real
pic( tk::real, tk::real, tk::real )
// *****************************************************************************
//! Set homogeneous initial conditions for a generic user-defined problem
//! \return Value of pressure
// *****************************************************************************
{
  return 0.0;
}

} // userdef::

namespace nonlinear_energy_growth {

static std::vector< tk::real >
ic( tk::real x, tk::real y, tk::real z, tk::real t )
// *****************************************************************************
//! Set initial conditions prescribing nonlinear energy growth
//! \param[in] x X coordinate where to evaluate the solution
//! \param[in] y Y coordinate where to evaluate the solution
//! \param[in] z Z coordinate where to evaluate the solution
//! \param[in] t Time where to evaluate the solution
//! \return Values of conserved variables
// *****************************************************************************
{
  using std::cos;

  // manufactured solution parameters
  auto ce = g_cfg.get< tag::problem_ce >();
  auto r0 = g_cfg.get< tag::problem_r0 >();
  auto a = g_cfg.get< tag::problem_alpha >();
  auto k = g_cfg.get< tag::problem_kappa >();
  const auto& b = g_cfg.get< tag::problem_beta >();

  auto ec = [ ce, t ]( tk::real kappa, tk::real h, tk::real p ) {
    return std::pow( -3.0*(ce + kappa*h*h*t), p );
  };

  auto hx = [ x, y, z, b ]() {
    return cos(b[0]*M_PI*x) * cos(b[1]*M_PI*y) * cos(b[2]*M_PI*z);
  };

  // density
  auto r = r0 + std::exp(-a*t) * (1.0 - x*x - y*y - z*z);
  // energy
  auto re = r * ec(k,hx(),-1.0/3.0);

  return { r, 0.0, 0.0, 0.0, re };
}

static std::vector< tk::real >
src( tk::real x, tk::real y, tk::real z, tk::real t )
// *****************************************************************************
//! Compute and return source term for nonlinear energy growth
//! \param[in] x X coordinate where to evaluate the source
//! \param[in] y Y coordinate where to evaluate the source
//! \param[in] z Z coordinate where to evaluate the source
//! \param[in] t Time where to evaluate the source
//! \return Source for flow variables + transported scalars
// *****************************************************************************
{
  using std::sin; using std::cos; using std::pow;

  // manufactured solution parameters
  auto a = g_cfg.get< tag::problem_alpha >();
  const auto& b = g_cfg.get< tag::problem_beta >();
  auto ce = g_cfg.get< tag::problem_ce >();
  auto kappa = g_cfg.get< tag::problem_kappa >();
  auto r0 = g_cfg.get< tag::problem_r0 >();
  // ratio of specific heats
  auto g = g_cfg.get< tag::mat_spec_heat_ratio >();
  // spatial component of density field
  auto gx = 1.0 - x*x - y*y - z*z;
  // derivative of spatial component of density field
  std::array< tk::real, 3 > dg{ -2.0*x, -2.0*y, -2.0*z };
  // spatial component of energy field
  auto h = cos(b[0]*M_PI*x) * cos(b[1]*M_PI*y) * cos(b[2]*M_PI*z);
  // derivative of spatial component of energy field
  std::array< tk::real, 3 >
    dh{ -b[0]*M_PI*sin(b[0]*M_PI*x)*cos(b[1]*M_PI*y)*cos(b[2]*M_PI*z),
        -b[1]*M_PI*cos(b[0]*M_PI*x)*sin(b[1]*M_PI*y)*cos(b[2]*M_PI*z),
        -b[2]*M_PI*cos(b[0]*M_PI*x)*cos(b[1]*M_PI*y)*sin(b[2]*M_PI*z) };
  // temporal function f and its derivative
  auto ft = std::exp(-a*t);
  auto dfdt = -a*ft;
  // density and its derivatives
  auto rho = r0 + ft*gx;
  std::array< tk::real, 3 > drdx{ ft*dg[0], ft*dg[1], ft*dg[2] };<--- Variable 'drdx' can be declared as const array
  auto drdt = gx*dfdt;
  // internal energy and its derivatives
  auto ie = pow( -3.0*(ce + kappa*h*h*t), -1.0/3.0 );
  std::array< tk::real, 3 > dedx{ 2.0 * pow(ie,4.0) * kappa * h * dh[0] * t,<--- Variable 'dedx' can be declared as const array
                                  2.0 * pow(ie,4.0) * kappa * h * dh[1] * t,
                                  2.0 * pow(ie,4.0) * kappa * h * dh[2] * t };
  const auto dedt = kappa * h * h * pow(ie,4.0);

  std::vector< tk::real > s( 5, 0.0 );
  // density source
  s[0] = drdt;
  // momentum source
  s[1] = (g-1.0)*(rho*dedx[0] + ie*drdx[0]);
  s[2] = (g-1.0)*(rho*dedx[1] + ie*drdx[1]);
  s[3] = (g-1.0)*(rho*dedx[2] + ie*drdx[2]);
  // energy source
  s[4] = rho*dedt + ie*drdt;

  return s;
}

} // nonlinear_energy_growth::

namespace rayleigh_taylor {

static std::vector< tk::real >
ic( tk::real x, tk::real y, tk::real z, tk::real t )
// *****************************************************************************
//! Set initial conditions prescribing a Rayleigh-Taylor flow
//! \param[in] x X coordinate where to evaluate the solution
//! \param[in] y Y coordinate where to evaluate the solution
//! \param[in] z Z coordinate where to evaluate the solution
//! \param[in] t Time where to evaluate the solution
//! \return Values of conserved variables
// *****************************************************************************
{
  using std::sin; using std::cos;

  // manufactured solution parameters
  auto a = g_cfg.get< tag::problem_alpha >();
  const auto& b = g_cfg.get< tag::problem_beta >();
  auto p0 = g_cfg.get< tag::problem_p0 >();
  auto r0 = g_cfg.get< tag::problem_r0 >();
  auto k = g_cfg.get< tag::problem_kappa >();

  // spatial component of density and pressure fields
  tk::real gx = b[0]*x*x + b[1]*y*y + b[2]*z*z;
  // density
  tk::real r = r0 - gx;
  // velocity
  tk::real ft = cos(k*M_PI*t);
  tk::real u = ft * z * sin(M_PI*x);
  tk::real v = ft * z * cos(M_PI*y);
  tk::real w = ft * ( -0.5*M_PI*z*z*(cos(M_PI*x) - sin(M_PI*y)) );
  // total specific energy
  tk::real rE = eos::totalenergy( r, u, v, w, p0 + a*gx );

  return { r, r*u, r*v, r*w, rE };
}

static std::vector< tk::real >
src( tk::real x, tk::real y, tk::real z, tk::real t )
// *****************************************************************************
//! Compute and return source term for a Rayleigh-Taylor flow
//! \param[in] x X coordinate where to evaluate the source
//! \param[in] y Y coordinate where to evaluate the source
//! \param[in] z Z coordinate where to evaluate the source
//! \param[in] t Time where to evaluate the source
//! \return Source for flow variables + transported scalars
// *****************************************************************************
{
  using std::sin; using std::cos;

  // manufactured solution parameters
  auto a = g_cfg.get< tag::problem_alpha >();
  const auto& b = g_cfg.get< tag::problem_beta >();
  auto k = g_cfg.get< tag::problem_kappa >();
  auto p0 = g_cfg.get< tag::problem_p0 >();
  auto g = g_cfg.get< tag::mat_spec_heat_ratio >();

  // evaluate solution at x,y,z,t
  auto U = ic( x, y, z, t );

  // density, velocity, energy, pressure
  auto rho = U[0];
  auto u = U[1]/U[0];
  auto v = U[2]/U[0];
  auto w = U[3]/U[0];
  auto E = U[4]/U[0];
  auto p = p0 + a*(b[0]*x*x + b[1]*y*y + b[2]*z*z);

  // spatial gradients
  std::array< tk::real, 3 > drdx{{ -2.0*b[0]*x, -2.0*b[1]*y, -2.0*b[2]*z }};<--- Variable 'drdx' can be declared as const array
  std::array< tk::real, 3 > dpdx{{ 2.0*a*b[0]*x, 2.0*a*b[1]*y, 2.0*a*b[2]*z }};<--- Variable 'dpdx' can be declared as const array
  tk::real ft = cos(k*M_PI*t);
  std::array< tk::real, 3 > dudx{{ ft*M_PI*z*cos(M_PI*x),<--- Variable 'dudx' can be declared as const array
                                   0.0,
                                   ft*sin(M_PI*x) }};
  std::array< tk::real, 3 > dvdx{{ 0.0,<--- Variable 'dvdx' can be declared as const array
                                   -ft*M_PI*z*sin(M_PI*y),
                                   ft*cos(M_PI*y) }};
  std::array< tk::real, 3 > dwdx{{ ft*M_PI*0.5*M_PI*z*z*sin(M_PI*x),<--- Variable 'dwdx' can be declared as const array
                                   ft*M_PI*0.5*M_PI*z*z*cos(M_PI*y),
                                  -ft*M_PI*z*(cos(M_PI*x) - sin(M_PI*y)) }};
  std::array< tk::real, 3 > dedx{{<--- Variable 'dedx' can be declared as const array
    dpdx[0]/rho/(g-1.0) - p/(g-1.0)/rho/rho*drdx[0]
    + u*dudx[0] + v*dvdx[0] + w*dwdx[0],
    dpdx[1]/rho/(g-1.0) - p/(g-1.0)/rho/rho*drdx[1]
    + u*dudx[1] + v*dvdx[1] + w*dwdx[1],
    dpdx[2]/rho/(g-1.0) - p/(g-1.0)/rho/rho*drdx[2]
    + u*dudx[2] + v*dvdx[2] + w*dwdx[2] }};

  // time derivatives
  auto dudt = -k*M_PI*sin(k*M_PI*t)*z*sin(M_PI*x);
  auto dvdt = -k*M_PI*sin(k*M_PI*t)*z*cos(M_PI*y);
  auto dwdt =  k*M_PI*sin(k*M_PI*t)/2*M_PI*z*z*(cos(M_PI*x) - sin(M_PI*y));
  auto dedt = u*dudt + v*dvdt + w*dwdt;

  std::vector< tk::real > s( 5, 0.0 );
  // density source
  s[0] = u*drdx[0] + v*drdx[1] + w*drdx[2];
  // momentum source
  s[1] = rho*dudt+u*s[0]+dpdx[0] + U[1]*dudx[0]+U[2]*dudx[1]+U[3]*dudx[2];
  s[2] = rho*dvdt+v*s[0]+dpdx[1] + U[1]*dvdx[0]+U[2]*dvdx[1]+U[3]*dvdx[2];
  s[3] = rho*dwdt+w*s[0]+dpdx[2] + U[1]*dwdx[0]+U[2]*dwdx[1]+U[3]*dwdx[2];
  // energy source
  s[4] = rho*dedt + E*s[0] + U[1]*dedx[0]+U[2]*dedx[1]+U[3]*dedx[2]
       + u*dpdx[0]+v*dpdx[1]+w*dpdx[2];

  return s;
}

} // rayleigh_taylor::

namespace sedov {
static std::vector< tk::real >
ic( tk::real x, tk::real y, tk::real z, tk::real )
// *****************************************************************************
//! Set initial conditions prescribing the Sedov blast wave
//! \param[in] x X coordinate where to evaluate the solution
//! \param[in] y Y coordinate where to evaluate the solution
//! \param[in] z Z coordinate where to evaluate the solution
//! \return Values of conserved variables
// *****************************************************************************
{
  using std::abs;

  // pressure
  auto eps = std::numeric_limits< tk::real >::epsilon();
  tk::real p;
  if (abs(x) < eps && abs(y) < eps && abs(z) < eps) {
    p = g_cfg.get< tag::problem_p0 >();
  } else {
    p = 0.67e-4;
  }

  // density
  tk::real r = 1.0;
  // velocity
  tk::real u = 0.0;
  tk::real v = 0.0;
  tk::real w = 0.0;
  // total specific energy
  tk::real rE = eos::totalenergy( r, u, v, w, p );

  return { r, r*u, r*v, r*w, rE };

}
} // sedov::

namespace sod {
static std::vector< tk::real >
ic( tk::real x, tk::real, tk::real, tk::real )
// *****************************************************************************
//! Set initial conditions prescribing the Sod shocktube
//! \param[in] x X coordinate where to evaluate the solution
//! \return Values of conserved variables
// *****************************************************************************
{
  tk::real r, p, u, v, w, rE;

  if (x<0.5) {
    // density
    r = 1.0;
    // pressure
    p = 1.0;
  }
  else {
    // density
    r = 0.125;
    // pressure
    p = 0.1;
  }

  // velocity
  u = 0.0;
  v = 0.0;
  w = 0.0;

  // total specific energy
  rE = eos::totalenergy( r, u, v, w, p );

  return { r, r*u, r*v, r*w, rE };
}
} // sod::

namespace taylor_green {

static std::vector< tk::real >
ic( tk::real x, tk::real y, tk::real, tk::real )
// *****************************************************************************
//! Set initial conditions prescribing the Taylor-Green vortex
//! \param[in] x X coordinate where to evaluate the solution
//! \param[in] y Y coordinate where to evaluate the solution
//! \return Values of conserved variables
// *****************************************************************************
{
  // density
  tk::real r = 1.0;
  // pressure
  tk::real p = 10.0 + r/4.0*(cos(2.0*M_PI*x) + cos(2.0*M_PI*y));
  // velocity
  tk::real u =  sin(M_PI*x) * cos(M_PI*y);
  tk::real v = -cos(M_PI*x) * sin(M_PI*y);
  tk::real w = 0.0;
  // total specific energy
  auto rE = eos::totalenergy( r, u, v, w, p );

  return { r, r*u, r*v, r*w, rE };
}

static std::vector< tk::real >
src( tk::real x, tk::real y, tk::real, tk::real )
// *****************************************************************************
//! Compute and return source term for a the Taylor-Green vortex
//! \param[in] x X coordinate where to evaluate the source
//! \param[in] y Y coordinate where to evaluate the source
//! \return Source for flow variables + transported scalars
// *****************************************************************************
{
  using std::cos;

  std::vector< tk::real > s( 5, 0.0 );
  s[4] = 3.0*M_PI/8.0*( cos(3.0*M_PI*x)*cos(M_PI*y)
                      - cos(3.0*M_PI*y)*cos(M_PI*x) );

  return s;
}

} // taylor_green::

namespace vortical_flow {

static std::vector< tk::real >
ic( tk::real x, tk::real y, tk::real z, tk::real )
// *****************************************************************************
//! Set initial conditions prescribing vortical flow
//! \param[in] x X coordinate where to evaluate the solution
//! \param[in] y Y coordinate where to evaluate the solution
//! \param[in] z Z coordinate where to evaluate the solution
//! \return Values of conserved variables
// *****************************************************************************
{
  // manufactured solution parameters
  tk::real a = g_cfg.get< tag::problem_alpha >();
  tk::real k = g_cfg.get< tag::problem_kappa >();
  tk::real p0 = g_cfg.get< tag::problem_p0 >();
  // ratio of specific heats
  auto g = g_cfg.get< tag::mat_spec_heat_ratio >();
  // velocity
  tk::real ru = a*x - k*y;
  tk::real rv = k*x + a*y;
  tk::real rw = -2.0*a*z;
  // total specific energy
  tk::real rE = (ru*ru + rv*rv + rw*rw)/2.0 + (p0 - 2.0*a*a*z*z) / (g - 1.0);

  return { 1.0, ru, rv, rw, rE };
}

static std::vector< tk::real >
src( tk::real x, tk::real y, tk::real z, tk::real )
// *****************************************************************************
//! Compute and return source term for vortical flow
//! \param[in] x X coordinate where to evaluate the source
//! \param[in] y Y coordinate where to evaluate the source
//! \param[in] z Z coordinate where to evaluate the source
//! \return Source for flow variables + transported scalars
// *****************************************************************************
{
  // manufactured solution parameters
  auto a = g_cfg.get< tag::problem_alpha >();
  auto k = g_cfg.get< tag::problem_kappa >();
  // ratio of specific heats
  auto g = g_cfg.get< tag::mat_spec_heat_ratio >();
  // evaluate solution at x,y,z
  auto u = ic( x, y, z, 0.0 );

  std::vector< tk::real > s( 5, 0.0 );
  // momentum source
  s[1] = a*u[1]/u[0] - k*u[2]/u[0];
  s[2] = k*u[1]/u[0] + a*u[2]/u[0];
  // energy source
  s[4] = (s[1]*u[1] + s[2]*u[2])/u[0] + 8.0*a*a*a*z*z/(g-1.0);

  return s;
}

} // vortical_flow::

namespace slot_cyl {

static std::vector< tk::real >
ic( tk::real x, tk::real y, tk::real, tk::real t )
// *****************************************************************************
//! Set initial conditions prescribing slotted cylinder, cone, Gauss hump
//! \param[in] x X coordinate where to evaluate the solution
//! \param[in] y Y coordinate where to evaluate the solution
//! \param[in] t Time where to evaluate the solution
//! \return Values of conserved variables
// *****************************************************************************
{
  using std::sin; using std::cos; using std::sqrt;

  // manufactured solution parameters
  tk::real p0 = 1.0;

  std::vector< tk::real > u( 6, 0.0 );

  // prescribed velocity: rotate in x-y plane
  u[0] = 1.0;
  u[1] = u[0] * (0.5 - y);
  u[2] = u[0] * (x - 0.5);
  u[3] = 0.0;
  u[4] = eos::totalenergy( u[0], u[1]/u[0], u[2]/u[0], u[3]/u[0], p0 );

  const tk::real R0 = 0.15;

  // center of the cone
  tk::real x0 = 0.5;
  tk::real y0 = 0.25;
  tk::real r = sqrt((x0-0.5)*(x0-0.5) + (y0-0.5)*(y0-0.5));
  tk::real kx = 0.5 + r*sin( t );
  tk::real ky = 0.5 - r*cos( t );

  // center of the hump
  x0 = 0.25;
  y0 = 0.5;
  r = sqrt((x0-0.5)*(x0-0.5) + (y0-0.5)*(y0-0.5));
  tk::real hx = 0.5 + r*sin( t-M_PI/2.0 ),
           hy = 0.5 - r*cos( t-M_PI/2.0 );

  // center of the slotted cylinder
  x0 = 0.5;
  y0 = 0.75;
  r = sqrt((x0-0.5)*(x0-0.5) + (y0-0.5)*(y0-0.5));
  tk::real cx = 0.5 + r*sin( t+M_PI ),
           cy = 0.5 - r*cos( t+M_PI );

  // end points of the cylinder slot
  tk::real i1x = 0.525, i1y = cy - r*cos( std::asin(0.025/r) ),
           i2x = 0.525, i2y = 0.8,
           i3x = 0.475, i3y = 0.8;

  // rotate end points of cylinder slot
  tk::real ri1x = 0.5 + cos(t)*(i1x-0.5) - sin(t)*(i1y-0.5),
           ri1y = 0.5 + sin(t)*(i1x-0.5) + cos(t)*(i1y-0.5),
           ri2x = 0.5 + cos(t)*(i2x-0.5) - sin(t)*(i2y-0.5),
           ri2y = 0.5 + sin(t)*(i2x-0.5) + cos(t)*(i2y-0.5),
           ri3x = 0.5 + cos(t)*(i3x-0.5) - sin(t)*(i3y-0.5),
           ri3y = 0.5 + sin(t)*(i3x-0.5) + cos(t)*(i3y-0.5);

  // direction of slot sides
  tk::real v1x = ri2x-ri1x, v1y = ri2y-ri1y,
           v2x = ri3x-ri2x, v2y = ri3y-ri2y;

  // lengths of direction of slot sides vectors
  tk::real v1 = sqrt(v1x*v1x + v1y*v1y),
           v2 = sqrt(v2x*v2x + v2y*v2y);

  // cone
  r = sqrt((x-kx)*(x-kx) + (y-ky)*(y-ky)) / R0;
  if (r<1.0) u[5] = 0.6*(1.0-r);

  // hump
  r = sqrt((x-hx)*(x-hx) + (y-hy)*(y-hy)) / R0;
  if (r<1.0) u[5] = 0.2*(1.0+cos(M_PI*std::min(r,1.0)));

  // cylinder
  r = sqrt((x-cx)*(x-cx) + (y-cy)*(y-cy)) / R0;
  const std::array< tk::real, 2 > r1{{ v1x, v1y }},
                                  r2{{ x-ri1x, y-ri1y }};
  const auto d1 = (r1[0]*r2[1] - r2[0]*r1[1]) / v1;
  const std::array< tk::real, 2 > r3{{ v2x, v2y }},
                                  r4{{ x-ri2x, y-ri2y }};
  const auto d2 = (r3[0]*r4[1] - r4[0]*r3[1]) / v2;
  if (r<1.0 && (d1>0.05 || d1<0.0 || d2<0.0)) u[5] = 0.6;

  return u;
}

static std::vector< tk::real >
src( tk::real x, tk::real y, tk::real z, tk::real t )
// *****************************************************************************
//! Compute and return source term for slotted cylinder, cone, Gauss hump
//! \param[in] x X coordinate where to evaluate the source
//! \param[in] y Y coordinate where to evaluate the source
//! \param[in] z Z coordinate where to evaluate the source
//! \param[in] t Time where to evaluate the source
//! \return Source for flow variables + transported scalars
// *****************************************************************************
{
  // evaluate solution at x,y,z,t
  auto u = ic( x, y, z, t );

  std::vector< tk::real > s( 6, 0.0 );
  // momentum source
  s[1] = -u[2];
  s[2] =  u[1];

  return s;
}

} // slot_cyl::

namespace point_src {

static std::vector< tk::real >
ic( tk::real x, tk::real y, tk::real z, tk::real t )
// *****************************************************************************
//! Set initial conditions for point source problem
//! \param[in] x X coordinate where to evaluate initial conditions
//! \param[in] y Y coordinate where to evaluate initial conditions
//! \param[in] z Z coordinate where to evaluate initial conditions
//! \param[in] t Time where to evaluate initial conditions
//! \return Values of conserved variables
// *****************************************************************************
{
  auto u = userdef::ic( x, y, z, t );
  u.push_back( 0.0 );
  return u;
}

static void
src( const std::array< std::vector< tk::real >, 3 >& coord,
     tk::real t,
     tk::Fields& U )
// *****************************************************************************
//! Apply point-source directly to numerical solution
//! \param[in] coord Mesh node coordinates
//! \param[in] t Physical time
//! \param[in,out] U Solution vector at recent time step
//! \note This is different from other source terms, because this directly
//!   modifies the solution instead of applied as a source term mathematically.
//!   Hence the function signature is also different.
// *****************************************************************************
{
  if (U.nprop() == 5) return;

  const auto& source = g_cfg.get< tag::problem_src >();
  const auto& location = source.get< tag::location >();
  auto radius = source.get< tag::radius >();
  auto release_time = source.get< tag::release_time >();
  auto largereal = std::numeric_limits< double >::max();

  if (location.size() != 3 ||
      std::abs(radius - largereal) < 1.0e-12 ||
      std::abs(release_time - largereal) < 1.0e-12)
  {
    return;
  }

  auto sx = location[0];
  auto sy = location[1];
  auto sz = location[2];
  auto sr = radius;
  auto st = release_time;

  if (t < st) return;

  const auto& x = coord[0];
  const auto& y = coord[1];
  const auto& z = coord[2];

  for (std::size_t i=0; i<U.nunk(); ++i) {
    auto rx = sx - x[i];
    auto ry = sy - y[i];
    auto rz = sz - z[i];
    if (rx*rx + ry*ry + rz*rz < sr*sr) U(i,5) = 1.0;
  }

  return;
}

} // point_src::

namespace gyor {

static std::vector< tk::real >
ic( tk::real, tk::real, tk::real, tk::real t )
// *****************************************************************************
//! Set initial conditions prescribing gyor
//! \param[in] t Time where to evaluate initial conditions
//! \return Values of conserved variables
// *****************************************************************************
{
  auto r = 1.225;
  auto p = 1.0e5;

  auto u = 5.0 * std::cos(t);
  auto v = 5.0 * std::sin(t);
  auto w = 0.0;
  tk::real rE = eos::totalenergy( r, u, v, w, p );

  return { r, r*u, r*v, r*w, rE };
}

} // gyor::

namespace poisson {

static std::vector< tk::real >
ic( tk::real, tk::real, tk::real, tk::real )
// *****************************************************************************
//! Set velocity initial conditions for testing a Poisson solve only
//! \return Values for initial conditions
// *****************************************************************************
{
  return { 0, 0, 0 };
}

} // poisson::

namespace poisson_const {

static tk::real
pr( tk::real, tk::real, tk::real )
// *****************************************************************************
//! Set pressure rhs for testing a Poisson solve
//! \return Value for pressure rhs
// *****************************************************************************
{
  return 6.0;
}

static tk::real
ic( tk::real x, tk::real y, tk::real z )
// *****************************************************************************
//! Evaluate pressure boundary condition
//! \param[in] x X coordinate where to evaluate the BC
//! \param[in] y Y coordinate where to evaluate the BC
//! \param[in] z Z coordinate where to evaluate the BC
//! \return Value for pressure BC
// *****************************************************************************
{
  return x*x + y*y + z*z;
}

} // poisson_const::

namespace poisson_harmonic {

static tk::real
pr( tk::real, tk::real, tk::real )
// *****************************************************************************
//! Set pressure rhs for testing a Laplace solve
//! \return Value for pressure rhs
// *****************************************************************************
{
  return 0.0;
}

static tk::real
ic( tk::real x, tk::real y, tk::real z )
// *****************************************************************************
//! Evaluate pressure boundary condition
//! \param[in] x X coordinate where to evaluate the BC
//! \param[in] y Y coordinate where to evaluate the BC
//! \param[in] z Z coordinate where to evaluate the BC
//! \return Value for pressure BC
// *****************************************************************************
{
  const auto& b = g_cfg.get< tag::problem_beta >();
  auto x0 = b[0];
  auto y0 = b[1];
  auto z0 = b[2];

  return 1.0 / std::sqrt( (x-x0)*(x-x0) + (y-y0)*(y-y0) + (z-z0)*(z-z0) );
}

} // poisson_harmonic::

namespace poisson_sine {

static tk::real
pr( tk::real x, tk::real y, tk::real z )
// *****************************************************************************
//! Set pressure rhs for testing a Poisson solve
//! \return Value for pressure rhs
// *****************************************************************************
{
  return -M_PI * M_PI * x * y * std::sin( M_PI * z );
}

static tk::real
ic( tk::real x, tk::real y, tk::real z )
// *****************************************************************************
//! Evaluate pressure boundary condition
//! \param[in] x X coordinate where to evaluate the BC
//! \param[in] y Y coordinate where to evaluate the BC
//! \param[in] z Z coordinate where to evaluate the BC
//! \return Value for pressure BC
// *****************************************************************************
{
  return x * y * std::sin( M_PI * z );
}

} // poisson_sine::

namespace poisson_sine3 {

static tk::real
pr( tk::real x, tk::real y, tk::real z )
// *****************************************************************************
//! Set pressure rhs for testing a Poisson solve
//! \return Value for pressure rhs
// *****************************************************************************
{
  using std::sin;

  return -3.0 * M_PI * M_PI * sin(M_PI*x) * sin(M_PI*y) * sin(M_PI*z);
}

static tk::real
ic( tk::real x, tk::real y, tk::real z )
// *****************************************************************************
//! Evaluate pressure boundary condition
//! \param[in] x X coordinate where to evaluate the BC
//! \param[in] y Y coordinate where to evaluate the BC
//! \param[in] z Z coordinate where to evaluate the BC
//! \return Value for pressure BC
// *****************************************************************************
{
  return sin(M_PI*x) * sin(M_PI*y) * sin(M_PI*z);
}

} // poisson_sine3::

namespace poisson_neumann {

static tk::real
pr( tk::real x, tk::real y, tk::real )
// *****************************************************************************
//! Set pressure rhs for testing a Poisson solve
//! \param[in] x X coordinate where to evaluate the rhs
//! \param[in] y Y coordinate where to evaluate the rhs
//! \return Value for pressure rhs
// *****************************************************************************
{
  return -3.0 * std::cos(2.0*x) * std::exp(y);
}

static std::array< tk::real, 3 >
pg( tk::real x, tk::real y, tk::real )
// *****************************************************************************
//! Set pressure gradient for testing a Poisson solve
//! \param[in] x X coordinate where to evaluate the pressure gradient
//! \param[in] y Y coordinate where to evaluate the pressure gradient
//! \return Value for pressure gradient at a point
// *****************************************************************************
{
  return { -2.0 * std::sin( 2.0 * x ) * std::exp( y ),
           std::cos(2.0*x) * std::exp(y),
           0.0 };
}

static tk::real
ic( tk::real x, tk::real y, tk::real )
// *****************************************************************************
//! Evaluate pressure boundary condition
//! \param[in] x X coordinate where to evaluate the IC / analytic solution
//! \param[in] y Y coordinate where to evaluate the IC / analytic solution
//! \return Value for pressure
// *****************************************************************************
{
  return std::cos(2.0*x) * std::exp(y);
}

} // poisson_neumann::


namespace poiseuille {

static std::vector< tk::real >
ic( tk::real, tk::real y, tk::real, tk::real )
// *****************************************************************************
//! Set initial conditions prescribing the Poisuille problem
//! \param[in] y Y coordinate where to evaluate the solution
//! \return Values of conserved variables
// *****************************************************************************
{
  auto eps = std::numeric_limits< tk::real >::epsilon();
  auto nu = g_cfg.get< tag::mat_dyn_viscosity >();
  if (nu < eps) Throw( "Poiseuille flow needs nonzero viscosity" );

  auto dpdx = -0.12;
  auto u = -dpdx * y * (1.0 - y) / 2.0 / nu;

  return { u, 0.0, 0.0 };
}

static tk::real
pic( tk::real, tk::real, tk::real )
// *****************************************************************************
//! Set homogeneous initial conditions for Poiseuille
//! \return Value of pressure
// *****************************************************************************
{
  return 0.0;
}

} // poiseuille::


std::function< std::vector< tk::real >
             ( tk::real, tk::real, tk::real, tk::real ) >
IC()
// *****************************************************************************
//  Query user config and assign function to set initial conditions
//! \return The function to call to set initial conditions
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  std::function< std::vector< tk::real >
               ( tk::real, tk::real, tk::real, tk::real ) > ic;

  if (problem == "userdef")
    ic = userdef::ic;
  else if (problem == "nonlinear_energy_growth")
    ic = nonlinear_energy_growth::ic;
  else if (problem == "rayleigh_taylor")
    ic = rayleigh_taylor::ic;
  else if (problem == "sedov")
    ic = sedov::ic;
  else if (problem == "sod")
    ic = sod::ic;
  else if (problem == "taylor_green")
    ic = taylor_green::ic;
  else if (problem == "vortical_flow")
    ic = vortical_flow::ic;
  else if (problem == "slot_cyl")
    ic = slot_cyl::ic;
  else if (problem == "point_src")
    ic = point_src::ic;
  else if (problem == "gyor")
    ic = gyor::ic;
  else if (problem.find("poisson") != std::string::npos)
    ic = poisson::ic;
  else if (problem == "poiseuille")
    ic = poiseuille::ic;
  else
    Throw( "problem type ic not hooked up" );

  return ic;
}

std::function< std::vector< tk::real >
             ( tk::real, tk::real, tk::real, tk::real ) >
SOL()
// *****************************************************************************
//  Query user config and assign function to query analytic solutions
//! \return The function to call to query analytic solutions
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  if (problem == "userdef" ||
      problem == "sod" ||
      problem == "sedov" ||
      problem == "point_src")
    return {};
  else
    return IC();
}

void
initialize( const std::array< std::vector< tk::real >, 3 >& coord,
            tk::Fields& U,
            tk::real t,
            const std::vector< std::unordered_set< std::size_t > >& boxnodes )
// *****************************************************************************
//  Set inital conditions
//! \param[in] coord Mesh node coordinates
//! \param[in,out] U Array of unknowns
//! \param[in] t Physical time
//! \param[in] boxnodes Nodes at which box user ICs are set (for each box IC)
// *****************************************************************************
{
  Assert( coord[0].size() == U.nunk(), "Size mismatch" );

  auto ic = IC();
  const auto& x = coord[0];
  const auto& y = coord[1];
  const auto& z = coord[2];

  // Set initial conditions dependeing on problem configured
  for (std::size_t i=0; i<x.size(); ++i) {

    // Set background ICs
    auto s = ic( x[i], y[i], z[i], t );
    Assert( s.size() == U.nprop(), "Size mismatch" );

    // Initialize user-defined ICs in boxes
    box( i, s, boxnodes );

    // Set values for ICs
    for (std::size_t c=0; c<s.size(); ++c) U(i,c) = s[c];

  }
}

std::function< tk::real( tk::real, tk::real, tk::real ) >
PRESSURE_RHS()
// *****************************************************************************
//  Query user config and assign function to set pressure rhs
//! \return The function to call to set pressure rhs
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  std::function< tk::real( tk::real, tk::real, tk::real ) > pr;

  if (problem == "poisson_const")
    pr = poisson_const::pr;
  else if (problem == "poisson_harmonic")
    pr = poisson_harmonic::pr;
  else if (problem == "poisson_sine")
    pr = poisson_sine::pr;
  else if (problem == "poisson_sine3")
    pr = poisson_sine3::pr;
  else if (problem == "poisson_neumann")
    pr = poisson_neumann::pr;

  return pr;
}

std::function< tk::real( tk::real, tk::real, tk::real ) >
PRESSURE_IC()
// *****************************************************************************
//  Query user config and assign function to set pressure initial conditions
//! \return The function to call to set pressure initial conditions
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  std::function< tk::real( tk::real, tk::real, tk::real ) > ic;

  if (problem == "userdef")
    ic = userdef::pic;
  else if (problem == "poisson_const")
    ic = poisson_const::ic;
  else if (problem == "poisson_harmonic")
    ic = poisson_harmonic::ic;
  else if (problem == "poisson_sine")
    ic = poisson_sine::ic;
  else if (problem == "poisson_sine3")
    ic = poisson_sine3::ic;
  else if (problem == "poisson_neumann")
    ic = poisson_neumann::ic;
  else if (problem == "poiseuille")
    ic = poiseuille::pic;
  else
    Throw( "problem type not hooked up" );

  return ic;
}

std::function< tk::real( tk::real, tk::real, tk::real ) >
PRESSURE_SOL()
// *****************************************************************************
//  Query user config and assign function to query analytic pressure solutions
//! \return The function to call to query analytic solutions
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  if (problem == "userdef" || problem == "poiseuille")
    return {};
  else
    return PRESSURE_IC();
}

std::function< std::array< tk::real, 3 >( tk::real, tk::real, tk::real ) >
PRESSURE_GRAD()
// *****************************************************************************
//  Assign function to query pressure gradient at a point
//! \return The function to call to query the pressure gradient
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  if (problem == "poisson_neumann")
    return poisson_neumann::pg;

  return {};
}

tk::real
initialize( tk::real x, tk::real y, tk::real z )
// *****************************************************************************
//  Evaluate initial condition for pressure
//! \param[in] x X coordinate where to evaluate the pressure initial condition
//! \param[in] y Y coordinate where to evaluate the pressure initial condition
//! \param[in] z Z coordinate where to evaluate the pressure initial condition
//! \return Pressure initial condition
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  std::function< tk::real( tk::real, tk::real, tk::real ) > ic;

  if (problem == "poisson_const")
    ic = poisson_const::ic;
  else if (problem == "poisson_harmonic")
    ic = poisson_harmonic::ic;
  else if (problem == "poisson_sine")
    ic = poisson_sine::ic;
  else if (problem == "poisson_sine3")
    ic = poisson_sine3::ic;
  else
    Throw( "problem type not hooked up" );

  return ic( x, y, z );
}

std::function< std::vector< tk::real >
                 ( tk::real, tk::real, tk::real, tk::real ) >
SRC()
// *****************************************************************************
//  Query user config and assign function to add a source term
//! \return The function to call to evaluate a problem-sepcific source term
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  std::function<
    std::vector< tk::real >( tk::real, tk::real, tk::real, tk::real ) > src;

  if (problem == "nonlinear_energy_growth")
    src = nonlinear_energy_growth::src;
  else if (problem == "rayleigh_taylor")
    src = rayleigh_taylor::src;
  else if (problem == "taylor_green")
    src = taylor_green::src;
  else if (problem == "vortical_flow")
    src = vortical_flow::src;
  else if (problem == "slot_cyl")
    src = slot_cyl::src;

  return src;
}

std::function< void( const std::array< std::vector< tk::real >, 3 >&,
                     tk::real,
                     tk::Fields& ) >
PHYS_SRC()
// *****************************************************************************
//  Query user config and assign function to apply source to numerical solution
//! \return The function to call to evaluate a problem-sepcific source term
// *****************************************************************************
{
  const auto& problem = inciter::g_cfg.get< tag::problem >();

  std::function< void( const std::array< std::vector< tk::real >, 3 >&,
                       tk::real,
                       tk::Fields& ) > src;

  if (problem == "point_src") {
    src = point_src::src;
  }

  return src;
}

} // problems::